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Perturbative study of classical Ablowitz-Ladik type soliton dynamics in relation
to energy transport in a-helical proteins

K. Kundu
Institute of Physics, Bhubaneswar 751 005, India

~Received 27 July 1999; revised manuscript received 3 December 1999!

Classical Ablowitz-Ladik type soliton dynamics from three closely related classical nonlinear equations is
studied using a perturbative method. Model nonintegrable equations are derived by assuming nearest neighbor
hopping of an exciton~vibron! in the presence of a full exciton~vibron!-phonon interaction in soft molecular
chains in general and spines ofa-helices in particular. In all cases, both trapped and moving solitons are found
implying activation energy barrier for propagating solitons. Analysis further shows that staggered and nearly
staggered trapped solitons will have a negative effective mass. In some models the exciton~vibron!-phonon
coupling affects the hopping. For these models, when the conservation of probability is taken into account,
only propagating solitons with a broad profile are found to be acceptable solutions. Of course, for the soliton
to be a physically meaningful entity, total nonlinear coupling strength should exceed a critical value. On the
basis of the result, a plausible modification in the mechanism for biological energy transport involving con-
formational change ina-helix is proposed. Future directions of the work are also mentioned.

PACS number~s!: 05.45.Yv, 05.60.Cd, 82.30.Nr, 87.15.By
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I. INTRODUCTION

Integrable nonlinear equations with single soliton a
multisolitons solutions constitute a very rich facet, albeit n
the only one, of nonlinear dynamics. These integrable eq
tions can either be continuous or discrete. In the first c
egory, we have the famous Korteweg-de Vries~KdV! equa-
tion. Another important example is continuous nonline
Schrödinger equation~CNLSE!. In the other category, fa
mous examples include Toda equation and Ablowitz-La
equation@1–9#. There is again a class of nonlinear equatio
that is as such not integrable, but in some way similar to
of the known integrable equations. A good example is S
erno equation@1,10,11#. In such a situation, soliton dynamic
can be studied by one or the other prescribed perturba
methods@1,12–16#. Here in this paper, we plan to stud
soliton dynamics of nonlinear equations that can arise in
molecular chains due to interaction of excitation with aco
tic phonon. Soliton in soft molecular chains arising fro
above mechanism is generally refered to as Davydov’s s
ton, which is also an example of envelop soliton@1,17–22#.
Other examples of envelop solitons are Zakharov soliton
plasma physics@23# and vibron solitons in nonlinear lattice
@24#. Soliton mechanisms have been proposed also in a n
ber of biomolecular and molecular processes@22,25#. One
good example in the biological area is the attempt to exp
the structural and dynamical flexibility of DNA by a solito
mechanism@22,26–29#. However, most well studied of all is
the problem of storage and transport of biological energy
Davydov’s soliton ina-helical proteins. Thea-helix is a
stable structure of proteins. It is a major constituent of str
tural proteins in hair and skin. It also plays a functional ro
in the transmembrane proteins that pump ions across the
PRE 611063-651X/2000/61~5!/5839~13!/$15.00
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tive membrane of nerve cells. We plan to use the problem
biological energy transport as paradigm in our analysis.
we delineate next the present level of theoretical understa
ing of the problem@1,17–22,30–36#, which is relevant for
our purpose.

To understand the significance of Davydov’s solitons v
a-vis the relevant biochemical problem, we note the follo
ing. ~i! Biological energy is released in units of 0.42 e
@22,30# by the hydrolysis of adenosine triphosphate~ATP! to
diphosphate~ADP! and~ii ! a basic biological resonance un
is ‘‘C5O’’ ~or amide-I bond! which has a quantum of en
ergy of 0.205 eV (1610 cm21) @18,22,31#. Most impor-
tantly, amide-I bond is found in every peptide group of eve
protein. This universality of amide-I bonds in proteins led
the idea that these bonds might be pivotal in the storage
well as in the transport of the biological energy released fr
the hydrolysis of ATP. However, for this to happen, the lif
time of the excitation in amide-I bonds should be enhan
to the level of biologically important time scale@32#. Ac-
cording to Davydov, such a scenerio is possible on
a-helix protein due to the trapping of vibrational energy
amide-I bonds by interaction with acoustic phonons mov
along spines@18,22,31,33#.

In ana-helical protein the basic sequence of C and N h
a pitch of 5.4 Å@34#. Three spines that are almost longit
dinal are superimposed on this basic structure. A spine in
a-helical protein is basically a hydrogen bonded chain.
this chain carbonyl oxygen is hydrgen-bonded to amide
drogen and it is repeated. Ana-helical protein can, therefore
be viewed as an one-dimensional array of unit cells co
prised primarily of amide group (HuNuCvO). These
unit cells are connected by three soft springs of H-bonds
shown below@1,22,35#.
•••OvCuNuH•••OvCuNuH•••OvCuNuH•••OvCuNuH•••OvCu.
5839 ©2000 The American Physical Society
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So, spines ina-helix are good examples of soft molecul
chain as required in Davydov’s model. Davydov’s mod
further assumes that excitations are moved along the c
by dipole-dople interaction~J! among amide-I bonds. Davy
dov’s original calculation considers only a single channel
spine. Continuous approximation is used to transform
evant equations of motion to CNLSE. It is further known th
CNLSE can sustain both single soliton and multisoliton
lutions @5#. An order of magnitude analysis later indicate
that the hydrogen bond anharmonicity in a reala-helix is
about the right magnitude to support the soliton format
@34,36#. As an alternative to original Davydov’s soliton
Takeno proposed the concept of vibron solitons@24#. It is
also contended that vibron solitons are possibly better ca
dates than Davydov’s solitons for soliton-like entities in m
lecular hydrogen-bonded and biological systems.

The influence of the discrete nature of the chain on
soliton dynamics was later studied numerically@31,34,36#.
Some analytical information was also obtained by variatio
method@37#. In another work, the effect of the discrete n
ture of the chain on the soliton dynamics was studied b
perturbative method@14#. In this work also, as in the origina
Davydov’s model, the acoustic phonon only affects the s
energy of the exciton. Authors found both trapped and m
ing solitons. This result shows that discretization leads t
finite activation energy for enabling the soliton motion a
the soliton steering across the chain may be achieved
means of an appropriate external field. We would like
point out that discrete nonlinear equation considered by th
authors is nonintegrable. So, the system will have more p
pensity towards forming trapped solitons than the mov
ones. In the context of standard discrete nonlinear Sc¨-
dinger equation, this aspect has also been extensively stu
@38–48#.

It should again be pointed out that acoustic phonon
also affect the the hopping between sites by altering the s
ration between them@49,50#. This aspect is considered in th
numerical analysis, but in conjunction with diagonal co
pling. Since, both couplings are considered, this model w
be refered to as full model. In our calculations that follo
only nearest neighbor hopping will be allowed. In the n
merical work by Scott on the full model, coupling of th
acoustic phonon to the dipole-dipole coupling~J! of amide-I
vibration is assumed to be nominal. In another numer
work , however, magnitude of these two coupling streng
is considered to be same@34,36#. We further note in this
context that in trans-polyacetylene soliton is found by co
sidering only electron-phonon coupling in the hopping te
@49,50#. In biological systems, wide-ranging conformation
changes are encountered. Given the commonness of the
nomenon in biology, it is indeed possible for thea-helix to
undergo a conformational change by which the coupling
the dipole-dipole term~J! to the acoustic phonon might b
enhanced to an important degree. So, in this paper along
the full model with the above mentioned restriction on ho
ping, we consider a model in which acoustic phonon
coupled only to the hopping process (J). The model with
sole off-diagonal coupling leads to a nonlinear equati
which is very similar to Ablowitz-Ladik equation,~AL ! @9#.
As it will be shown later, a solution of this equation can
approximated to a good degree by a broad profile enve
l
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soliton of AL type. On the other hand, the full model as w
shall see also, contains a genuine AL part, which is the n
linearity responsible for the soliton solution. Another inte
esting nonlinear equation that will be considered here as
offshoot of the full model is modified Salerno equation.
one of the limiting forms is AL equation. So, the solito
dynamics of these three equations is studied by perturba
method using the soliton of AL equation as the zeroth-or
solution @14–16#.

The organization of the paper is as follows. In the ne
section, called formalism, we derive above mentioned n
linear equations of motion using semiclassical approxim
tion. In this section, we also analyze the structure of
solution of the model with sole off-diagonal coupling. In th
following section, we discuss the perturbative calculati
and include the pertinent results from three models. We fi
present the analysis of modified Salerno model. Then,
consider the model with only off-diagonal coupling. We e
the section by considering the full model. We discuss th
which comes as a natural consequence of our calculation
plausible modification in the mechanism for the transport
energy ina-helical proteins. We summarize next major r
sults of the paper. Future scopes emanating from this w
are also delineated in this section. In addition, four appen
ces are included to discuss important points of the pertu
tive calculation.

II. FORMALISM

A. Derivation of equations of motion

For the purpose of clarity, we focus on the propagation
a vibration, presumably amide-I, along a single spine in
a-helical protein. To model this problem, we use the Ham
tonian,HSSH which is the standard SSH Hamiltonian@49,50#
together with the Holstein part,Hh @51#. So, we have

HSSH5HSSH
0 1Hh , ~1!

where

HSSH
0 5

1

2M (
n

pn
21

K

2 (
n

~bn2bn11!2

1(
n

@J2a~bn2bn11!#~an11
† an1an

†an11! ~2!

and

Hh52x(
n

~bn112bn21!an
†an . ~3!

bn in these expressions represents the displacement o
nth H-N-C5O unit from its equilibrium position andan (an

†)
annihilates~creates! a spinless vibron~ a quantum of excita-
tion in the amide-I bond! in a Wannier-type orbital localized
at site n. pn in Eq. ~2! is the momentum conjugate to th
coordinatebn and in fact satiesfiespn5M ḃn . The terms
involving only the lattice coordinates represent the kine

energy @(1/2M )(pn
2# and the potential energy,@ 1

2 K((bn

2bn11)2# due to the extension or the compression of
bonds. The vibron hopping term in Eq.~2!, which describes
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the transfer of a vibron from the carbonyl site to an adjac
one, contains a constant piece~J! plus a term (a), which
describes the change in the hopping due to the change in
relative displacement of two adjacent H-N-C5O units. The
Hh part of the full Hamiltonian is derived by assuming th
the on-site interaction of the amide-I vibration with the la
tice acoustic phonon~expansion and contraction of H bond!
changes the self-energy of the vibron@14,52#. Modeling
these changes in hopping as well as in site energy by a li
coupling of the lattice coordinates, (bn2bn11), nPZ to the
vibrons is clearly an approximation valid only for small d
viations from equilibrium. The independence of the diago
coupling constant,x on the site indices$n% is yet another
simplifying approximation in this Hamiltonian. The sam
thing can also be said abouta, the off-diagonal coupling
constant. We note that fora-helical proteins, a choice set o
parameters for the amide- I mode isJ59.6731024 eV, K
51.21 eV/Å2, x538.731023 eV/Å, a56.231024

eV/Å andM5114.47 amu@35#. An ab initio SCF-MO cal-
culation givesa51.2231023 eV/Å @53#. Another similar
calculation yieldsa54.1531024 eV/Å @54#.

For energy transport in proteins, other modes might a
be important for the formation and the propagation of Da
dov’s solitons @53#. One such good candidate isn(NH)
mode. The sameab initio SCF-MO calculation shows tha
for the n(NH) mode, magnitudes ofJ~NH! and a~NH! are
quite sensitive to changes in the H-bond length@53#. So, for
a more comprehensive study other modes should also
included in the full Hamiltonian. Since, we are primari
interested in the perturbative analysis of soliton formation
Ablowitz-Ladik type equations, for simplicity, we restric
ourselves to one mode only.

To develop the classical description of a single mode
a single quantum vibron dynamics from Eq.~1!, we treat
$pn% and $bn% as classical variables. Furthermore, we co
sider a normalized state vector,uC& where

uC&5 (
nPZ

cn~ t !un&. ~4!

un& is the Wannier state associated with the nth site and
to the normalization condition, we have(ucnu251. Now
taking the expectation value ofHSSH over the state vector
uC& we get,

E~$pn ,bn ,cn ,cn
!%!5^CuHSSHuC&

5(
n

F pn
2

2M
1

K

2
~bn2bn11!2G

1(
n

@J2a~bn2bn11!#

3~cn11
! cn1cn

!cn11!

2x(
n

~bn112bn21!ucnu2. ~5!

E in Eq. ~5! can be shown to be a constant of motion. S
using this quantity as the relevant classical Hamiltonian,
derive our equations of motion.
t

the
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i\ ċn5
]E
]cn

!
5J~cn111cn21!1a~bn112bn!cn11

1a~bn2bn21!cn212x~bn112bn21!cn

~6!

M b̈n5K~bn111bn2122bn!1a~cn11
! cn1cn

!cn11!

2a~cn21
! cn1cn

!cn21!2x~ ucn11u22ucn21u2!.

~7!

In the general case, the dynamics of the coupled sys
described by Eqs.~6! and ~7! is rather complicated. How-
ever, the situation simplifies appreciably, if the inertia of t
elastic subsystem can be ignored. Consider two quanti
namely Vex max, the maximal velocity of the exciton an
Vac , the velocity of sound. If

R5S Vex max

Vac
D 2

[
4MJ2

K\2
!1, ~8!

we then have the desired situation@14#. Since, in the problem
of energy transport in proteins,R;0.08, the condition~8! is
evidently satisfied. Ignoring the inertia term we solve Eq.~7!
to obtain

~bn2bn21!5
x

K
~ ucnu21ucn21u2!2

a

K
~cn21

! cn1cn
!cn21!.

~9!

Finally the insertion of Eq.~9! in Eq. ~6! yields

i\ ċn52
x2

K
~ ucn11u21ucn21u212ucnu2!cn

1
xa

K
~cn11

! cn1cn
!cn111cn21

! cn1cn
!cn21!cn

1J~cn111cn21!2
a2

K
~cn11

! cn1cn
!cn11!cn11

2
a2

K
~cn21

! cn1cn
!cn21!cn21

1
xa

K
~ ucn11u21ucnu2!cn11

1
xa

K
~ ucnu21ucn21u2!cn21 . ~10!

We next define

g5
a2

KJ
, g52

x2

KJ
, d5

xa

KJ
, l5g12d2g,

e5
g

l
, e15

d

l
, e25

g

l
, t5

Jt

\
,

cn5exp~ inp!
Fn

Al
exp~2i t!, and rnm5Fn

!Fm .
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Introduction of these definitions in Eq.~10! and some simple
algebra gives

i Ḟn22Fn1~11rn,n!~Fn111Fn21!5Fp~Fn!, ~11!

where

Fp~Fn!5e~rn11,n111rn21,n2112rnn!Fn

2e1~rn,n111rn11,n1rn,n211rn21,n!Fn

2ernn~Fn111Fn21!

2e1@~rn11,n112rnn!Fn11

1~rn21,n212rnn!Fn21#

2e2@~rn,n111rn11,n2rnn!Fn11

1~rn,n211rn21,n2rnn!Fn21#. ~12!

Whena50, we get from Eq.~11! a variant of discrete non
linear Schro¨dinger equation~ADNLSE! where acoustic pho
non is considered instead of the usual optical phonon@14#.
This equation is studied perturbatively for soliton solution
When we formally consider the first term ofFp(Fn), n
PZ, we have

i Ḟn22Fn1~11rn,n!~Fn111Fn21!

5e~rn11n111rn21,n2112rnn!Fn . ~13!

We refer to Eq.~13! as modified Salerno equation~MSE!.
We further note that the quantity,N5(nPZ ln@11uFnu2# is
conserved for MSE. Whene50, we have Ablowitz-Ladik
equation@1,9#. This is known to have a single soliton solu
tion. So, for ueu!1, we have an instructive example whe
the soliton dynamics can be studied by a standard pertu
tive method@14–16#. Finally whenx50, we get

i Ḟn22Fn1~11rn,n111rn11,n!Fn11

1~11rn,n211rn21,n!Fn2150. ~14!

We next analyze Eq.~14! for possible soliton-like solutions

B. Analysis of Eq. „14… for solitons

In order to gain an understanding of the nature of
solution of Eq.~14! we consider the integrable Ablowitz
Ladik discrete nonlinear Schro¨dinger equation~ALDNLS!.
The integrable ALDNLS system of equations reads@1,9,15#

iQ̇n22Qn1~Qn111Qn21!~11uQnu2!50, nPZ.
~15!

The exact one-soliton solution of the ALDNLS is

Qn~t!5
sinhm

cosh@m~n2x!#
exp@ ik~n2x!2 i :# ~16!

with the following equations for the soliton parameters:

ṁ50, k̇50, :̇5v, ~17!

v52@12coshm cosk# ~18!
.

a-

e

ẋ5
2

m
sinhm sink. ~19!

So, for eachm there exists a band of velocities@see Eq.~19!#
at which the localized state or the one-soliton state can tra
without experiencing any Peierls-Nabarro~PN! pinning due
to the lattice discreteness@11,55#.

A careful inspection of Eq.~14! reveals that ifuFn11u
;uFnu, nPZ, it is then a perturbed ALDNLS. To investi
gate this further we write

f ~m,k!52 coshm cosk and Fn5
1

A2 f
Cn exp~ ikn2 ivt!

~20!

and bothm andk satisfy Eq.~17!. We further define

F (1)~Cn!5Ċn1sinkF11
Cn~Cn111Cn21!

2 coshm G
3~Cn112Cn21! ~21!

F (2)~Cn!5~v22!Cn1cosk~Cn111Cn21!

1
cosk

2 coshm
Cn~Cn11

2 1Cn21
2 !. ~22!

Introducing Eq.~20! in Eq. ~14! we obtainF ( j )(Cn)50, j
51,2 andnPZ. We now assume that

Cn5Qn exp@2 ik~n2x!1 i :# ~23!

and also make use of Eqs.~18! and~19!. This, in turn yields

F (1)~Cn!52 sinhm sink tanh@m~n2x!#
Cn

5

~11Cn
2!2

F (2)~Cn!52
cosk

coshm

Cn
3

~11Cn
2!

22 coshm cosk
Cn

5

~11Cn
2!2

.

If k;(2m11)p/2, mP Z, usinh (m)u! 1 but
usinhm/Acosku is finite, Eq. ~20! along with Eq.~23! then
constitutes a reasonably good approximation to the exact
lution of Eq. ~14!. We next apply a standard perturbativ
method @14–16# to study sequentially soliton solutions o
Eqs.~13!, ~14!, and~11!.

III. RESULTS AND DISCUSSION

A. Solitons in the perturbative regime of MSE, Eq. „13…

To apply the perturbation scheme to MSE, Eq.~13!, Eq.
~16! is used as the zeroth order solution,Fn

05Qn , nPZ. In
this perturbative scheme, it is further assumed that par
eters,k, x, m, and : depend on time. By means of thes
dependences the zeroth order approximation, Eq.~16! makes
it possible to take into account the main effect of the pert
bation,eFp(Fn)—the adiabatic adjustment to it of the sol
ton. The procedure is well laid out in Ref.@14#. This method
transforms the evolution of the discrete soliton of Eq.~13! to
the analysis of a system of coupled ODE’s involvingx, k,
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TABLE I. Nature of fixed points.

xs5
l

2
ks5np Nature Stability

xs5
l

2
ks5np Nature Stability

l n l n
even even hyperbolic unstable even odd limit cycle Stab
odd odd hyperbolic unstable odd even limit cycle Stab
r

.

o

p

g

n

we

e

on
al

-

and m. However, the equation for:̇, albeit it can be ob-
tained, is not needed for the analysis@14–16#.

Using the standard procedure we derive equations fok̇,
ṁ, and ẋ. Inasmuch asQn exp@2ik(n2x)2i:# is real, the
perturbation term in MSE does not contribute toṁ and ẋ
@14#. Equations for these three variables are given below

ṁ50 ~24!

ẋ52
sinhm

m
sink522

sinhm

m

] cosk

]k
~25!

k̇5
e

2 S 2p

m D 3

sinh2 m G~m,x! ~26!

where

S~m,x!5(
s51

`
p2s

m

sinhS p2s

m D cos~2psx! ~27!

G~m,x!52
m

2p3

]S~m,x!

]x
. ~28!

We note thatm is a constant. When sinh2 m,1 andm<p it
can be shown that

N'
Ap

m (
n51

`
~21!n11

n

G~n!

GS 1

2
1nD sinh2n m . ~29!

So, m can be approximately related to the constant of m
tion, N.

For the fixed point analysis, we note thatẋs50 yields
ks5np, n50,61,62 . . . . Similarly, k̇s50 yields xs
5 l /2, l 50,61,62 . . . . In the subsequent analysis, we a
proximateS(m,x) by the first term in the sum. Form<p,
this is a reasonable approximation. We definez15x2xs and
z25k2ks . We further define

A~m!52
sinhm

m
~30!

B~m,e!52e
sinh2m

m2

p2

m

sinh
p2

m

. ~31!
-

-

In the vicinity of fixed points, we have

ż15~21!nA~m!z2 ~32!

ż25~21! l4p2B~m,e!z1 . ~33!

After some trivial algebra, we get frm Eqs.~32! and ~33!

z1
2

A~m!
2~21!(n1 l )

z2
2

4p2B~m,e!
5Constant. ~34!

From Eq.~34!, we then get for the fixed points the followin
results shown in Table I.

We consider now Eqs.~30! and ~31!. We note that when
m→0, A(m)→2, andB(m,e)→0. On the other hand, whe
m→`, A(m)→2em/m while B(m,e)→2ee2m/m2. So, for
e.0, there exists amc such thatA(mc)2B(mc ,e)50. The
magnitude ofmc , of course varies withe. This is shown in
Fig. 1. Relevance of this section will be transparent as
proceed further.

From Eqs.~25! and ~26! we get

dHeff

dt
522

sinhm

m

] cosk

]k
k̇2

e

2 S 2p

m D 3

sinh2m G~m,x!ẋ50.

~35!

So, within a possible addition of am dependent constant, w
have

Heff~m,e,k,x!'2A~m!cosk1B~m,e!cos 2px. ~36!

Since, we are consideringm<p, S(m,x) in Eq. ~35! is again
approximated by the first term of the sum in Eq.~27!. We
further note thatHeff is periodic both ink andx. It is easily
seen from Eq.~36! that

FIG. 1. This figure pertains to modified Salerno equati
~MSE!, Eq. ~13! in the text. It shows the dependence of the critic
value of m, mc on the parameter,e for Heff(m,e,k,x), Eq. ~36!
derived from MSE. Bothmc and e are dimensionless. Further de
tails are given in the text.
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ẋ5
]Heff

]k
and k̇52

]Heff

]x
. ~37!

We should also note thatHeff(m,e,k,x) is a constant of mo-
tion and it defines approximately the total energy in the s
ton. It is to be noted that a potential energy ensues du
imparting of nonintegrability in Eq.~13! by the perturbation
term. Denoting this potential byDU(m,e) we find that

DU~m,e!5Heff~m,e,0,0!2HeffS m,e,0,
1

2D52B~m,e!.

~38!

So, the effect of nonintegrability disappears ife50 or be-
comes negligible ifp2/m@1.

From Eq. ~36! we find thatEmin52@A(m)1B(m,e)# and
Emax5@A(m)1B(m,e)#. We further define U0(m,e,x)
5B(m,e)cos 2px and U6(m,e,x)5U0(m,e,x)6A(m), be-
cause this will not change equations of motion. We then
Emin<U2<(B2A) and (A2B)<U1<Emax. We now con-
sider different cases for the dynamics. These are also sh
in Figs. 2~a! and 2~b! respectively. Figure 2~a! describes the
situation form,mc while Fig. 2~b! is for m.mc . Further-
more, in Fig. 2~b! we definek52pF to make the figure
symmetric. We consider now the dynamics in the spatial ox
direction.

Case I :m,mc . So,A(m).B(m,e).
~i! 2(A1B)5Emin,E,(B2A),0. In this limit, the soli-

ton is in the potential well defined byU2 . So, the dynamics
in x is finite and oscillatory.~ii ! (B2A),E,(A2B).
Since, U2,E,U1 , the motion inx is infinite. In other
words, we get propagating solitons.~iii ! (A2B),E,(A
1B)5Emax. In this case, the soliton is in the potential we
defined byU1 . So, the motion inx is again finite and oscil-
latory.

Case II :m.mc . So,A(m),B(m,e).
In this case, since (B2A).0, there is no region in the

energy domain where the soliton will not experience a
potential energy for its motion in thex direction. So, the
motion in x is always finite and oscillatory.

We consider next the other scenerio of the dynamics
the k direction. We defineu0(m,k)52A(m)cosk and
u6(m,e,k)5u06B(m,e). We then have the following situ
ations.

~i! 2(A1B),E,(A2B),0. In this case, the soliton i
inside the potential,u2 . So, the motion in thek space finite
and oscillatory.~ii ! 0,(A2B),E,(B2A).0. The mo-
tion in the k direction is infinite due to the absence of
confining potential in this energy range. This is shown
Fig. 2~b! by two broken curves lying on respective separa
ces.~iii ! (B2A),E,(B1A). The soliton experiences th
potentialu1 in thek direction. So, the corresponding motio
is finite and oscillatory.~iv! For m,mc , A(m).B(m,e).
So, it is clear from the analysis of the motion in thex direc-
tion that the motion ink will always be finite and oscillatory

For further understanding of the dynamics, we consi
Heff given by Eq.~36! aroundk50 andk56p. We find
aroundk50 that

Heff'
1

2
A~m!k21U2~m,e,x!. ~39!
i-
to

et

wn

y

n

-

r

So, the effective mass of the soliton,meff is A(m)21. For
m!1 we getmeff' m0(12m2/6) where the rest mass,m0
is taken to be1

2 . This implies that the presence of integr
blity reduces the effective mass of the soliton. Again fro
Eqs.~32! and~33!, we find that the frequency,v of the small
vibrations of the soliton center of mass near the bottom
the potential well is

v52pAA~m!B~m,e!. ~40!

It is also clear from the discussion that there is a criti
value of k, kcr such that fork.kcr , we shall get spatially
propagating soliton. Form,mc , kcr is given by the follow-
ing equation

kcr5arccosF12
2 B~m,e!

A~m! G . ~41!

FIG. 2. ~a! This figure pertains to MSE, Eq.~13! in the text. This
figure shows the phase diagram of the dynamics of solitons in
(x,k) plane, which is derived fromHeff(m,e,k,x) given by Eq.~36!
in the text. For this case,e51.0. So,mc5p. Since,kcr is taken to
bep/4 as a choice, this in turn givesm52.052 from Eq.~41! in the
text. So, this is the phase diagram form,mc . All quantities are
dimensionless.~b! This figure pertains to MSE, Eq.~13!. m53.2.
Since, all other parameters and details are same as in Figure 2~a!, it
is the figure form.mc . However, herek52pF. So, this is the
phase diagram in the (x,F) plane instead of usual (x,k) plane. This
is done to make the figure symmetric. Two propagating mode
the F-direction are shown by broken curves. Again, all quantit
are dimensionless.
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We also note that, inasmuch asB(m,e)→0 for p2/m@1,
kcr→0. On the other hand, whenm5mc , kcr5(2n11)p,
n50,61,62 . . . . Form.mc , Eq. ~41! shows that nokcr
exists.

Around k56p, we write k56p2u. Then, from Eq.
~36! we get

Heff52
1

2
A~m!u21U1~m,e,x!. ~42!

When k50, we have an unstaggered localized state, w
for k56p, we have a staggered localized state. We n
that for these values ofk, the velocity of the Ablowitz-Ladik
soliton is zero. We find that for staggered as well as nea
staggered localized states,meff of the localized soliton is
negative. Obviously, a localized state of a negative effec
mass is mechanically unstable at a minimum ofU1(m,e,x).
So, the staggered as well as nearly staggered localized s
will either be pinned or oscillate at the top of the potenti
This is precisely found because at the top ofU1 , k is 6p.
So, the kinetic energy is zero. This is consistent with
numerical result in Ref.@11#.

Finally, we note that the analysis in this section is do
within the leading order approximation by assuming thae
.0. Whene,0, we setx5y6 1

2 . Then, within the same
leading order analysis and in variablesy and k, result will
remain the same. We consider now the addition of the s
ond term ofFp(Fn) @Eqs. ~11! and ~12!# to Eq. ~13!. A
careful inspection of formulas given in Refs.@14# and @15#

will show that this term will not contribute to equations forẋ

and ṁ. Again, it can be simply shown that this term al
does not contribute to the equation fork̇. In other words, in
this perturbation scheme, the term is innocuous.

B. Perturbed Ablowitz-Ladik soliton dynamics of Eq. „14…

To apply the perturbation scheme to Eq.~14!, we note that
for this case Eqs.~11! and ~12! take the following form

i Ḟn22Fn1~11rn,n!~Fn111Fn21!5e2Fp~Fn!,
~43!

where

e2Fp~Fn!52~rn,n111rn11,n2rnn!Fn11

2~rn,n211rn21,n2rn,n!Fn21 . ~44!

Again, the standard method transforms the evolution of
discrete soliton of Eq.~14! to the analysis of a system o
coupled ODE’s involvingx, k, andm @14–16#. Equations for
first two variables read

k̇5S 2p

m D 3

@sinhm cosk#2 G~m,x! ~45!

ṁ5tanhm tank k̇, ~46!

whereG(m,x) is is given by Eqs.~27! and ~28!. From Eqs.
~45! and ~46! we find that

sinhm cosk5c5Constant. ~47!
e
e

ly

e

tes
.

e

e

c-

e

To understand the physical origin of Eq.~47! we examine
our ansatz, Eq.~16!. We note thatx has the dimension o
length while bothm and k have the dimension of invers
length or momentum. So, both of these cannot be simu
neously conjugate variables tox . Consequently, these tw
variables must be related by a functional relationship as
Eq. ~47!. For the full problem where phonons alter both s
energies and hopping,m andk are also found to be related
However, the relationship is not as trivial as Eq.~47! and it
will be discussed later. The equation for the remaining va
able,x reads

ẋ5F~m,x!sinhm tanhm sink, ~48!

whereF(m,x) is defined as follows.

S1~m,x!5(
s51

` H F p2s

m

sinhS p2s

m D G
2

coshS p2s

m D cos~2psx!J
f 1~c,m!5

2F112c coth~2m!2
2c

m G
m2

F~m,x!5 f 1~c,m!@112S~m,x!#1
2c

m3
@112S1~m,x!#

~49!

andS(m,x) has already been defined by Eq.~27!. To derive
these formulas@Eqs.~26!, ~29!, ~45!, ~46!, and~49!#, we have
made use of the famous Poisson’s sum formula@14,56#,
which reads

(
n52`

`

f ~nm!5
1

mE2`

`

dyF112(
s51

`

cosS 2psy

m D G f ~y!.

~50!

Other relevant integrals are given in Appendix A.
To obtain fixed points for this of set ODE’s we setẋs

50 andk̇s50. We further note thatk̇s50 also implies that
ṁs50 @Eq. ~46!#. By comparing Eqs.~45! and~48! with Eqs.
~26! and ~25! respectively, we find that this system also h
two sets of fixed points. Two sets together gives$xs ,ks%
5$ l /2,(n p)%, l& nPZ. Dependence of fixed points onl
andn for this case is also similar to the case of MSE. Hen
here too Table I holds good. The structure of fixed poi
then tells that below a threshhold energy, only oscillato
localized states will exist. It is again easy to see from E
~45! to ~49! that if sinhm tanhm sinkÞ0, we then have

F~m,x!
dm

dt
1S ]H̃e f f

]x
D dx

dt
50, ~51!

where

H̃e f f~m,x,c!5
4c

m2
S~m,x!. ~52!
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S(m,x) is given by Eq.~27!. We further define

dh~m,c!

dm
5 f 1~c,m!1

2c

m3
~53!

and

Heff~m,x,c!5h~m,c!1H̃e f f~m,x,c!. ~54!

The evaluation ofh(m,c) is given in Appendix B. After
some trite algebra it can be shown that

dHeff~m,x,c!

dt
52

4F112c coth~2 m!1
c

mG
m2

S~m,x!
dm

dt
.

~55!

Equations~45! and~46! definedm/dt. So, if umu is suitably
bounded (umu<p), we have an approximate constant of m
tion. This can be called an approximate effective Ham
tonian~see also Appendix C!. Equations forẋ, ṁ, andk̇ are
derived in Appendix D using the Poisson bracket formali
and the effective Hamiltonian given by Eq.~54!. The phase
diagram of the motion of the soliton in the (x,k) plane de-
rived from Eqs.~47! and ~54! for c52.0 is shown in Figs.
3~a! and 3~b!. While Fig. 3~a! shows the periodicity of the
motion in thex direction, Fig. 3~b! gives us the picture in the
k direction. This is a typical phase diagram showing bo
oscillatory localized solitons as well as propagating solito
Again Fig. 4 shows the motion in thex direction for c
51.2. By comparing Figs. 3~a! and 4, we see that asc→0,
the motion of the soliton tends to become free.

What happens if we use the ansatz~20! instead of~16!?
Of course, (vt) is replaced by:. No significant change
occurs. Since, we have to assume that bothk andm depend
on time, an extra term will be added to the perturbation te
@Eq. ~44!#. However, its contribution to the evolution equ
tions @Eqs. ~45!, ~46!, and ~48!# can be shown to be zero
Furthermore, in these equations one factor ofc is replaced by
tanhm/4. Again, the same procedure can be used to find
corresponding effective Hamiltonian.

C. The effect of normalization on the perturbative solution
of Eq. „14…

We use here ansatz~20! instead of~16!. The reason will
be self evident. We note that(ucnu251, nPZ implies that
(nuFnu25l5g. Now introducing Eqs.~20! and ~23! and
applying Eq.~50! we obtain

2g cosk 5
sinhm tanhm

m
@112S~m,x!#. ~56!

We now note that whenumu! 1, bothS(m,x) andG(m,x)
go to zero as exp@2(p2/m)#. So, in this limit the second term
of Eq. ~56! can be ignored. We also note thatṁ'0 and k̇
'0 in this limit. In other words bothm andk become prac-
tically time invariant. Another consequence is that Eq.~47!
in practical terms becomes redundant also. Equation~56!
-
-

h
.

e

then givesm'2g cosk or mmax'2g. The minimum soliton
size (sm) is approximately 2mmax

21 . We again note that in
this limit

^n&5 (
n52`

`

nucnu25x. ~57!

So, x becomes the center of mass of the distribution of
soliton packet. A striaght forward asymptotic analysis of E
~49! gives from Eq.~48!

dx

dt
52Fsinhm tanhm

m2 Gsink ~58!

FIG. 3. ~a!. This figure pertains to the model with sole of
diagonal coupling. It is obtained from the correspondin
Heff(m,x,c) given by Eq.~54! in the text. It shows the phase dia
gram of the dynamics of solitons in thex direction in the (x,k)
plane for c52.0. ms5sinh21(c)51.44. All quantities are dimen-
sionless. Further details can be found in the text.~b!. It is again for
the same model as in Fig. 3~a!. It shows the dynamics of solitons in
thek direction.ucu52.0. Again all quantities are dimensionless. F
two figures in the flanks,k65k6p. Also, xk6

5x60.5.
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which is practically the velocity of AL solitons. Inasmuch a
t5uJ/\ut, from Eq. ~58! we get that the maximum velocit
of the soliton,Vms'2 uJ/\u. For the amide-I, our calcula
tion givesVms; 1.323 103 m/s. For the calculation, the
distance between two carbonyl groups is taken 4.5 Å@31#.
Vms is approximately 0.29 of the sound velocity in the spi
@34,36#. Another interesting quantity is the extent of contra
tion or expansion of the chain due to the soliton formation
is calculated below along with its definition@14#.

lim
N→`

~bN,s2b2N,s!52
2a

K (
n52`

`

R@cncn21
! #

5
2J

a (
n52`

`

R@FnFn21
! #

5
J

a
tanhm. ~59!

So, for m.0 andJ and a having the same sign, the cha
will expand due to soliton formation. To understand
physical origin, we note that Eq.~14! is nonintegrable. So
moving solitons in this model should eventually be pinn
@14,55#. This can be achieved here only by reducing the
tersite transfer rate or equivalently by increasing bo
lengths.

Finally, for the amide-I vibration,a(I ) under normal
physiological condition does not appear to exceed 2
@1 pN'6.2431024 eV/ Å]. For n(NH), a(NH);3 pN
@53#. So, the magnitude ofa for either of these two modes i
not large enough to give a physically relevant value ofsm .
If a;10 pN, we getsm;30 units. So, this can be taken as
crude critical value ofa. We note in this context that in th
numerical simulation in Ref.@36#, the magnitude ofa is
allowed to vary from 20 to 60 pN. We further note that
a-helix under physiological conditions,R(N•••O), whereR
stands for the bond-length, is 2.7960.12 Å @22#. For the

FIG. 4. It shows the phase diagram of the dynamics of solit
for the same model in thex direction but for c51.2. ms

5sinh21(c)51.016. All quantities are dimensionless.
-
t

-
d

N

amide-I mode, it is also found theoretically thata(I )
changes fron 2 to 3 pN ifR(N---O) is changed from 2.916
to 2.722 Å @53#. For a similar change inR(N•••O), a(NH)
for then(NH) mode changes from 3 to 8 pN@53#. Notewor-
thy sensitivity of a(NH) towards the change inR(N•••O)
might have an important bearing on the mechanism of
ergy transport in proteins. This will be discussed later.

D. Perturbed Ablowitz-Ladik soliton in the full problem,
Eq. „11…

We first note that Eq.~11! has a genuine Ablowitz-Ladik
term, which is needed for a stable soliton. This arises du
coupling of diagonal and off-diagonal exciton~vibron!-
phonon interactions. Using the perturbation scheme eq
tions for k̇ and ṁ for the full problem are derived. To write
equations for these two variables in compact form, we fi
define

G1~m,x!5
2

l S p

m D 3

sinh2m G~m,x! ~60!

M ~k,m!5S d
sink

coshm
12g sin 2kD tanhm ~61!

N~k,m!52g2d
cosk

coshm
14g cos2 k. ~62!

G(m,x) is defined by Eq.~28!. With these definitions we
then have

k̇5N~k,m!G1~m,x! and ṁ5M ~k,m!G1~m,x!.
~63!

So, the differential equation that defines a functional re
tionship betweenm andk is Mdk/dt2Ndm/dt50. The cor-
responding Pfaffian differential equation isMdk2Ndm
50. We next consider two special cases. Case I :d50. In
this limit we have sinh2m(g12gcos2 k)5Constant. Wheng
50, we get back Eq.~47!. Case II :dÞ0 but g50. Physi-
cally this means that the off-diagonal coupling is sufficien
weak so thata2 can be neglected. In this limit, we find tha

f~k,m!52gm1cothm~d cosk/coshm22g!5Constant.

When d50, it gives m5Constant, which agrees with th
literature result@14#.

In the general case, we have a Pfaffian differential eq
tion of two variables,k and m. According to the theorem
@57#, it will always possess an integrating factor,b(k,m)
@Appendix C#. So, there will always be a function,f(k,m)
such that

df 5b~Mdk2Ndm!50.

Once,b is found from the appropiate ODE, the relation b
tweenk andm can be found@57#. But, the problem does no
appear to have any closed form analytical solution defying
turn a closed form analytical expression ofHeff for the full
model. But, we note that the general case in spite of
structural complication, is similar in one important aspect
least to the case of purely off-diagonal coupling model. Bo

s
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5848 PRE 61K. KUNDU
m and k vary with time in the general case also. So, t
normalization condition will impose adiabatic variation
both variables in time as found in the previous case. Thi
turn needsp2/m@1, which is very easily deducable from
Eq. ~63!. Consequently, the constraint relatingm and k can
be treated as redundant in this limit ofp2/m@1. Again, it is
deducable from the previous model that without the norm
ization condition, the full model will also give both trappe
and moving solitons. So, from known results and our cal
lations we see that due to off-diagonal coupling, howe
small, together with normalization condition full model wi
also prefer a moving soliton.

Since, for this model(ucnu251, nPZ implies (nuFnu2

5l, we obtain in the limit ofp2/m@1, l'2sinh2 m/m. Of
course, to obtain this result, Eqs.~16! and~50! are made use
of. Again, whenp2/m@1, we see from Eq.~57! that x ap-
proximately determines the center of mass of the soliton.
ẋ is the velocity of the profile. In this limiting situation, th
full model then gives

ẋ'2
sinhm tanhm

m2
sink1

d

l
2

sinhm

m F12
tanhm

m Gsink.

~64!

We first note that in Eq.~64!, there is a component in th
velocity that is the velocity of Ablowitz-Ladik soliton. It is
due to the genuine Ablowitz-Ladik term in Eq.~11!. When
all parameters have same sign, we have bothd.0 and l
.0. Then a comparison with with Eq.~58! shows that the
presence of both diagonal and off-diagonal couplings
creases the velocity of the soliton. Now, in the numeri
front, when we takex540 pN anda51 pN as in Ref.
@31#, we get l'0.56 which, in turn givesm50.273. We
then getcp2/m'36. So, the condition to use Eq.~64! is
satisfied. We get from these datad/l'0.024. Consequently
the full model gives that the maximum velocity of solito
Vms'1.33103 m/s. Corresponding result from numeric
simulation isVms'1.73103 m/s @31#. The intersite distance
~d! in both cases is 4.5 Å@31#. We further get that the mini-
mum soliton size,sm'7. Next quantity to calculate is th
extent of contraction or expansion of the chain due to soli
formation. To obtain this we introduce ansatz~16! to the
definition @14#. This then gives

lim
N→`

~bN,s2b2N,s!52F x

K
1

am

K

cosk

sinhmG . ~65!

We next discuss the problem of soliton pinning and its
fects on biological energy transport.

E. Soliton pinning and biological energy transport

There are two facets in the energy propagation,~1! an
effective trapping of energy and~2! its effective release fol-
lowed by its dissipation-free propagation to the desired lo
tion. Energy can be effectively trapped by diagonal coupl
of the vibron to the phonon. In this context, a possibility th
natural proteins may absorb radiation into a state that is
tically self trapped and then relax to a state that is acou
cally self trapped with a longer lifetime, is also propos
@1,58#. However, the moving soliton formed by diagon
in

l-
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-

-
g
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coupling cannot be a very effective mechanism for the tra
port of energy. The system is inherently discrete. This d
creteness will cause PN retardation to the moving solit
Eventually, the soliton will be pinned due to the PN potent
arising from the discreteness@11,55#. In mathematical lan-
guage, nonintegrable character of the model equation
have a dominant effect. So, the relevance of the calcula
involving only off-diagonal coupling of vibron with phonon
in the spine is paramount. We first note that the mo
shows, just like in the diagonal case, both trapped and pro
gating solitons. However, when the conservation of the pr
ability is taken into account, Ablowitz-Ladik type soliton i
found in the propagating mode. This is definitely an impo
tant result. Albeit the calculation is done in the perturbat
scheme, it is clear beyond doubt that an element of o
diagonal coupling, however small, is needed for the effect
propagation of a soliton or a soliton-like moiety. This is fu
ther substantiated by the full model where both couplings
considered. Of course, the present formalism also shows
off-diagonal coupling cannot altogether remove PN pinn
problem. Since, our model equation, Eq.~14! is comparable
to AL equation, we expect that PN pinning will be su
pressed considerably. Definitely, the propensity for the f
mation of self-localized states due to PN pinning should
investigated in detail. Regarding other two calculations,
note that the problem of pinning of solitons by PN potent
in Salerno model is studied extensively by numerical integ
tion @11#. It is found that solitons get pinned faster and fas
as the strength of the nonintegrable term increases. T
problem of pinning of solitons will not be any different fo
MSE, Eq.~13!. In the full model we have the requisite AL
nonlinear term which arises due to coupling of diagonal a
off-diagonal interactions. Although AL term makes solito
transparent to PN potential, the relevant equation@Eq. ~11!#
also has extensive nonintegrable terms. So, the soliton in
model will also be pinned. We, however, expect that by
creasing the off-diagonal coupling and concomitantly red
ing the diagonal coupling, this pinning problem can be s
nificantly reduced. This aspect needs thorough investigat

We note in continuation thata(I ) for the amide-I vibra-
tion in a-helix is very insensitive to the change inR(N¯O),
where R stands for the bond-length. On the other han
a(NH) for n(NH) is very sensitive to any alternation i
R(N¯O). Relevant theoretical data are quoted in the text
view of the discussion above, we propose the followi
modification to the existing mechanism. In our scheme,
facilitate the transport,a-helix undergoes a conformationa
change which changesR(N¯O). In this conformationally
changed system, energy is transferred from the amide-I m
to the neighboringn(NH) mode or modes where the off
diagonal vibron-phonon coupling is sufficiently strong. Th
will aid the propagation of energy by a soliton like entity. A
the concluding stage the system undergoes another co
mational change either locally or globally to trap the solit
at the point of capture by enhancing or introducing an
diagonal vibron-phonon coupling. To the best of my know
edge, this mechanism of energy transfer has not been stu
so far, at least in details.

IV. SUMMARY

The formation of moving soliton due to full excito
~vibron!-phonon coupling in a soft molecular chain in ge
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eral and in a spine of ana-helix in particular is studied here
This study is done within the framework of a Hamiltonia
which contains the standard SSH part and a Holstein p
Relevant nonlinear equations are obtained using antia
batic approximation. An interesting nonlinear equation t
is derived here for the first time as an offshoot of the f
model is modified Salerno equation. This equation can
considered to describe a truncated model for biological
ergy transport. Again, this equation is studied by perturba
method for soliton dynamics. Analysis shows that nonin
grability in the equation introduces finite activation ener
for enabling solitonic motion. This model also shows sta
gered and unstaggered localized states. Furthermore,
gered and nearly staggered localized states are shown to
negative effective mass. Perturbative analysis of the mo
with sole off-diagonal coupling also confirms that nonin
grability introduces finite activation energy for solitonic m
tion. It is further found from this model that an element
off-diagonal coupling, however small, and the conservat
of the probability together give a propagating soliton. This
my opinion is a very important result. In the full model, th
AL nonlinear term that stabilizes solitons is found. This te
arises due to coupling of diagonal and off-diagonal excit
phonon interactions. It is also suggested that the magni
of off-diagonal coupling should be enhanced in the f
model to reduce PN pinning problem that may be exp
enced by moving solitons. So, a full analytical calculati
involving both diagonal and off-diagonal couplings, if po
sible, is desirable to discern the importance of both c
plings. Again, models involving more than one mode sho
be considered. Other refinement in the theory will need
consideration of mechanical interaction between oscilla
with more complex structure. Finally, these calculatio
might also be useful in understanding proton transport
biological systems and exciton transport in nonbiologi
hydrogen-bonded systems.

APPENDIX A: RELEVANT INTEGRALS

Following integrals are required for the perturbative c
culation.

I ~a,b!5E
0

` cos~ax!

@cosh~bx!#2
dx5

ap

2b2 sinhS ap

2b D ~A1!

andb.0. This integral can be found in Ref.@59#.

J~a,m!5E
2`

` cos~ax!

@cosh~x!cosh~x2m!#2
dx

5

2paFsinS am

2 D G2

F „sinh~m!…2sinhS ap

2 D G
2

2pa

F „sinh~m!…2sinhS ap

2 D G F12coth~m!
sin~am!

a G .
~A2!
rt.
ia-
t
l
e
-

e
-

-
ag-
ave
el
-

n

-
de
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-
d
e
rs
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n
l

-

Other two integrals that we need areJ(0,m) and
]J(a,m)/]a. Furthermore, for all integrals involving the pa
rameter a, we seta52ps/m, sPZ.

APPENDIX B: CALCULATION OF h„m,c…

For m2,p2, we have@59#

cothm5
1

m F1 1 (
k51

`
22kB2k

~2k!!
m2kG ~B1!

whereB2k is the Bernoulli number of order (2k) with the
following expression@59#.

B2k5~21!k21
2~2k!!

~2p!2k
z~2k! ~B2!

and z defines Riemann Zeta function. Now the insertion
B2 in B1 gives@59#

@m cothm21#

m3
5

1

3m
2

2

~pm!3 (
k52

`

~21!kz~2k!S m

p D 2k

5
dG~m!

dm
~B3!

where the functionG(m) is defined by

aj5
$z@2~ j 11!#21%

j
, j 5” 0;

G~m!5
1

3
ln m2

1

p2
lnF11S m

p D 2G1
1

p2 (
j 51

`

~21! jaj S m

p D 2 j

.

~B4!

As n→`, z(n)→1. So, an→0 as n→`. The alternating
infinite series in Eq.~B4! is convergent by the Leibnitz cri
terion@59#. It is also easy to show that the series is absolut
convergent with the radius of convergence of (2p). The
numerical convergence of the sum in Eq.~B4! is also greatly
improved@59#. Equation~53! can be rearranged to obtain

dh~m,c!

dm
5

2

m2
116c

@2m coth~2m!21#

~2m!3
~B5!

and the constantc is defined by Eq.~47!. The function,
h(m,c) can be obtained by using Eq.~B4!.

APPENDIX C: PFAFFIAN DIFFERENTIAL EQUATIONS
IN TWO VARIABLES AND THE EFFECTIVE

HAMILTONIAN

Consider the following Pfaffian differential equation
two variables, saym andx.

F~m,x!dx1G~m,x!dm50. ~C1!

This is the Pfaffian differential form of Eq.~51!. Another
instructive example of a Pfaffian differential equation of tw
variables comes from Eq.~63!. There is a fundamental dif
ference between Pfaffian differential equations in two va
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ables and those in a higher number of variables. IfF(m,x)
and G(m,x) satisfy the exact differentiality condition in
certain domainD, there exists inD then exactly one func-
tion, H(m,x) such thatH(m,x)5constant. Again, a Pfaffian
differential equation in two variables always possesses
integrating factor. So, ifF and G do not satisfy the exac
differentiality condition as such, it is always possible to fi
an integrating factor,k(m,x) such that (kF) and (kG) sat-
isfy the exact differentiality condition@57#. For some specia
cases,k(m,x) can be easily found@57#. However, in the
more general case it is a solution of a partial differen
equation. This PDE arises from the exact differentiality co
dition.

It is then clear from this deliberation that the right ha
side of Eq.~55! can be absorbed in the definition ofHeff by
using an appropriate integrating factor. The extra term in
~55! is a second order term. In the range ofm, considred in
our calculation, its inclusion inHeff will not add anything
qualitatively different in the physics. With this consideratio
this is ignored in the numerical calculation.

APPENDIX D: DERIVATION OF EQUATIONS
OF MOTION

To derive the equations of motion, we first multiply bo
sides of Eqs.~45!, ~46!, and ~48! by c21 and define a new
time, t85ct. So, all derivatives with respect to time he
will imply derivatives with respect tot8. c is, of course,
defined by Eq.~47!. We make a coordinate transformatio
wherex→x andk→m. The latter transformation is define
by Eq. ~47!. It can be easily shown that the Jacobian mat
o-

,

r-

ttis

in

v.
n

l
-

.

,

x

of the transformation is symplectic@2,60#. So, the transfor-
mation is canonical. Our fundamental Poisson brackets a

$x,x%505$m,m% ~D1!

$x,m%x,k5
sinhm tanhm sink

c
. ~D2!

Of course, Eq.~D2! can be derived from Eq.~47!. We now
use basic properties of Poisson bracket to obtain equation
motion @60#.

k̇5$k,Heff%x,k52
]Heff

]x
; ~D3!

ẋ5$x,Heff%x,k5
]Heff

]x
$x,x%1

]Heff

]m
$x,m%x,k

5
sinhm tanhm sink

c

]Heff

]m
; ~D4!

ṁ5$m,Heff%x,k5
]Heff

]m
$m,m%2

]Heff

]x
$ x,m%x,k

52
sinhm tanhm sink

c

]Heff

]x
. ~D5!

Albeit Eq. ~48! is slightly modified due to the approximatio
in Heff , other two equations, namely Eqs.~45! and ~46! are
fully obtained.
e-

ys.
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