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Perturbative study of classical Ablowitz-Ladik type soliton dynamics in relation
to energy transport in a-helical proteins
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Classical Ablowitz-Ladik type soliton dynamics from three closely related classical nonlinear equations is
studied using a perturbative method. Model nonintegrable equations are derived by assuming nearest neighbor
hopping of an excitotvibron) in the presence of a full excitévibron)-phonon interaction in soft molecular
chains in general and spines®fhelices in particular. In all cases, both trapped and moving solitons are found
implying activation energy barrier for propagating solitons. Analysis further shows that staggered and nearly
staggered trapped solitons will have a negative effective mass. In some models the(eékecdorphonon
coupling affects the hopping. For these models, when the conservation of probability is taken into account,
only propagating solitons with a broad profile are found to be acceptable solutions. Of course, for the soliton
to be a physically meaningful entity, total nonlinear coupling strength should exceed a critical value. On the
basis of the result, a plausible modification in the mechanism for biological energy transport involving con-
formational change im-helix is proposed. Future directions of the work are also mentioned.

PACS numbgs): 05.45.Yv, 05.60.Cd, 82.30.Nr, 87.15.By

[. INTRODUCTION tive membrane of nerve cells. We plan to use the problem of
. . . . . biological energy transport as paradigm in our analysis. So,
In_tegrable non!|near equ.at|ons with .smgle sohton_ andwe delineate next the present level of theoretical understand-
multisolitons solut|on_s constitute a very rich facet, albeit noting of the problem{1,17—22,30—3F which is relevant for
the only one, of nonlinear dynamics. These integrable equas, purpose.
tions can either be continuous or discrete. In the first cat- 14 understand the significance of Davydov’s solitons vis-
egory, we have the famous Korteweg-de ViigslV) equa-  a.yis the relevant biochemical problem, we note the follow-
tion."Another important example is continuous nonlinearing. (i) Biological energy is released in units of 0.42 eV
Schralinger equation(lCNLSE). In the other category, fa- [22,3( by the hydrolysis of adenosine triphosphédP) to
mous examples include Toda equation and Ablowitz-LadikdiphosphatéADP) and(ii) a basic biological resonance unit
equation1-9]. There is again a class of nonlinear equationsis “C=0" (or amide-l bondl which has a quantum of en-
that is as such not integrable, but in some way similar to onergy of 0.205 eV (1610 cm') [18,22,3]. Most impor-
of the known integrable equations. A good example is Saltantly, amide-1 bond is found in every peptide group of every
erno equatiof1,10,17. In such a situation, soliton dynamics protein. This universality of amide-I bonds in proteins led to
can be studied by one or the other prescribed perturbatiothe idea that these bonds might be pivotal in the storage as
methods[1,12—-18. Here in this paper, we plan to study well as in the transport of the biological energy released from
soliton dynamics of nonlinear equations that can arise in softhe hydrolysis of ATP. However, for this to happen, the life-
molecular chains due to interaction of excitation with acoustime of the excitation in amide-I bonds should be enhanced
tic phonon. Soliton in soft molecular chains arising fromto the level of biologically important time sca[@2]. Ac-
above mechanism is generally refered to as Davydov’s solieording to Davydov, such a scenerio is possible on an
ton, which is also an example of envelop solifdnl17-23. a-helix protein due to the trapping of vibrational energy in
Other examples of envelop solitons are Zakharov solitons immide-I bonds by interaction with acoustic phonons moving
plasma physic§23] and vibron solitons in nonlinear lattices along spine$18,22,31,33
[24]. Soliton mechanisms have been proposed also in a num- In an a-helical protein the basic sequence of C and N has
ber of biomolecular and molecular proces§g,25. One a pitch of 5.4 A[34]. Three spines that are almost longitu-
good example in the biological area is the attempt to explairdinal are superimposed on this basic structure. A spine in an
the structural and dynamical flexibility of DNA by a soliton «-helical protein is basically a hydrogen bonded chain. In
mechanisnj22,26—29. However, most well studied of all is this chain carbonyl oxygen is hydrgen-bonded to amide hy-
the problem of storage and transport of biological energy bydrogen and it is repeated. Arhelical protein can, therefore,
Davydov’s soliton ina-helical proteins. Thex-helix is a  be viewed as an one-dimensional array of unit cells com-
stable structure of proteins. It is a major constituent of strucprised primarily of amide group (H-N—C=0). These
tural proteins in hair and skin. It also plays a functional roleunit cells are connected by three soft springs of H-bonds as
in the transmembrane proteins that pump ions across the ashown below1,22,34.

.+.0=C—N—H:--O=C—N—H:---O=C—N—H---O=C—N—H---0=C—.
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So, spines ina-helix are good examples of soft molecular soliton of AL type. On the other hand, the full model as we
chain as required in Davydov's model. Davydov’'s modelshall see also, contains a genuine AL part, which is the non-
further assumes that excitations are moved along the chalinearity responsible for the soliton solution. Another inter-
by dipole-dople interactiofJ) among amide-l bonds. Davy- €sting nonlinear equation that will be considered here as an
dov’s original calculation considers only a single channel oroffshoot of the full model is modified Salerno equation. Its
spine. Continuous approximation is used to transform relone of the limiting forms is AL equation. So, the soliton
evant equations of motion to CNLSE. It is further known thatdynamics of these three equations is studied by perturbative
CNLSE can sustain both single soliton and multisoliton so-M€thod using the soliton of AL equation as the zeroth-order

lutions [5]. An order of magnitude analysis later indicated SPlution[14-18.

that the hydrogen bond anharmonicity in a reahelix is The organization of the paper is as follows. In the next
about the right magnitude to support the soliton formation>€ction. call_ed formallsm, we (_jerlve al_)ove ment|oned hon-
linear equations of motion using semiclassical approxima-

[34,36. As an alternative to original Davydov’s solitons, ' ; .

Takeno proposed the concept of vibron solitg@]. It is tion. In this section, we also analyze the structure of the

also contended that vibron solitons are possibly better candgelution of the model with sole off-diagonal coupling. In the
ollowing section, we discuss the perturbative calculation

dates than Davydov’s solitons for soliton-like entities in mo- . _ )
lecular hydrogen-bonded and biological systems. and include the pertinent reSl_JI_ts from three models. We first
The influence of the discrete nature of the chain on thér€Sent the analysis of modified Salerno model. Then, we

soliton dynamics was later studied numericdlBi,34,34. consider_ the model yvith_only off-diagonal couplir)g. We end
Some analytical information was also obtained by variationa?he. section by considering the full model. We discuss .then,
method[37]. In another work, the effect of the discrete na- Wh'Ch. COMES as a 'natl'JraI consequence of our calculations, a
ture of the chain on the soliton dynamics was studied by Eplausml_e mod|f_|cat|on mlthe mechanism _for the transport of
perturbative methofL4]. In this work also, as in the original ©Nergy ina-helical proteins. We summarize next major re-
Davydov's model, the acoustic phonon only affects the siteUlts Of the paper. Future scopes emanating from this work
energy of the exciton. Authors found both trapped and moy&'€ also delineated in this section. In addition, four appendi-
ing solitons. This result shows that discretization leads to &S @€ mclgded to discuss important points of the perturba-
finite activation energy for enabling the soliton motion andtVe calculation.
the soliton steering across the chain may be achieved by
means of an appropriate external field. We would like to Il. FORMALISM
point out that d_iscrete nonlinear equation cqnsidered by these A. Derivation of equations of motion
authors is nonintegrable. So, the system will have more pro- } )
pensity towards forming trapped solitons than the moving FOr the purpose of clarity, we focus on the propagation of
ones. In the context of standard discrete nonlinear ‘Schrc? vibration, presumably amide-l, along a single spine in an
dinger equation, this aspect has also been extensively studiétihelical protein. To model this problem, we use the Hamil-
[38—44. tonian,H sy which is the standard SSH Hamiltonig49,50

It should again be pointed out that acoustic phonon cafegether with the Holstein parti, [51]. So, we have
also affect the the hopping between sites by altering the sepa- Hew—HO +H &
ration between therf¥9,50. This aspect is considered in the SSHTTIssH™ Tiho
numerical analysis, but in conjunction with diagonal COU-\ here
pling. Since, both couplings are considered, this model will
be refered to as full model. In our calculations that follow, 1 K
only nearest neighbor hopping will be allowed. In the nu- Hgsfm 2 pﬁ+ > 2 (,Bn—,BnH)2
merical work by Scott on the full model, coupling of the . "
acoustic phonon to the dipole-dipole couplify of amide-|
vibration is assumed to be nominal. In another numerical +, [J—a(Bn—Bnsi)](@l jan+alan 1) (2)
work , however, magnitude of these two coupling strengths n
is considered to be sani&4,3G. We further note in this
context that in trans-polyacetylene soliton is found by con-
sidering only electron-phonon coupling in the hopping term
[49,50. In biological systems, wide-ranging conformational Hh=—X> (Bns1—Bn-1)atan. 3
changes are encountered. Given the commonness of the phe- "

nomenon in biology, ?t is indeed possible_ for thenelix to n in these expressions represents the displacement of the
undergo a conformational change by which the coupling o th H-N-C=0 unit from its equilibrium position and,, (ai)

the dipole-dipole tern(J) to the acoustic phonon might be o : . :
enhane:ed to gn impor:ia)nt degree. So, in t[r)]is paper a?ong Wi&ﬁnmhnar':es(cregtess s;;;nless vibrorf a quantgm Iolf ex?ta;j
. ce o ion in the amide-I bondin a Wannier-type orbital localize

the full model V.V'th the above menthned restriction on hoF.)'at siten. p, in Eqg. (2) is the momentum conjugate to the
ping, we consider a model in which acoustic phonon is i , o .
coupled only to the hopping procesd)( The model with ~ coordinates, and in fact satiesfiep,=Mp,. The terms
sole off-diagonal coupling leads to a nonlinear equation,'nVOIV'ng only the lattice coordinates represent the kinetic
which is very similar to Ablowitz-Ladik equatiofAL) [9]. energy[(1/2M)=p?] and the potential energy,sK=(8,

As it will be shown later, a solution of this equation can be — 8,,1)?] due to the extension or the compression of H

approximated to a good degree by a broad profile envelopkeonds. The vibron hopping term in E®), which describes
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the transfer of a vibron from the carbonyl site to an adjacent
one, contains a constant pie¢® plus a term &), which

describes the change in the hopping due to the change in the

relative displacement of two adjacent H-N=O units. The
H,, part of the full Hamiltonian is derived by assuming that
the on-site interaction of the amide-I vibration with the lat-
tice acoustic phonofexpansion and contraction of H bonds
changes the self-energy of the vibr¢f4,52. Modeling
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5841

iﬁén:_,(:\](CnJrl"'Cnfl)"' @(Bn+1—PBn)Cni1

ack

+a(Bn=Bn-1)Cn-1=X(Bn+1— Bn-1)Cn
(6)

MBr=K(Bni1tBn-1—2Bn)+ a(C;+1Cn+C;Cn+1)

these changes in hopping as well as in site energy by a linear
coupling of the lattice coordinates3f{— B,+ 1), he Z to the
vibrons is clearly an approximation valid only for small de- 7)
viations from equilibrium. The independence of the diagonal

coupling constanty on the site indicegn} is yet another In the general case, the dynamics of the coupled system
simplifying approximation in this Hamiltonian. The same described by Eqs(6) and (7) is rather complicated. How-
thing can also be said about, the off-diagonal coupling €ever, the situation simplifies appreciably, if the inertia of the
constant. We note that far-helical proteins, a choice set of €lastic subsystem can be ignored. Consider two quantities,
parameters for the amide- | modeds9.67x10° % eV, K namely Ve, max the maximal velocity of the exciton and
=1.21 eVIR, x=38.7x10% eVIA, «a=6.2x10"% Vac, the velocity of sound. If

eV/A andM =114.47 amy35]. An ab initio SCF-MO cal-
culation givesa=1.22x10" 2 eV/A [53]. Another similar
calculation yieldsa=4.15x 10" eV/A [54].

For energy transport in proteins, other modes might also
be important for the formation and the propagation of Davy-we then have the desired situatida]. Since, in the problem
dov’'s solitons[53]. One such good candidate i§¥NH)  of energy transport in protein®~0.08, the conditior{8) is
mode. The samab initio SCF-MO calculation shows that evidently satisfied. Ignoring the inertia term we solve &g.

- a(Cﬁflcn‘FC;Cn—l)_X(|Cn+1|2_ lch-1]%).

2 aMJ?
Kh?

R= <1, (8)

Vex m ax)
Vac

for the »(NH) mode, magnitudes of(NH) and a(NH) are
quite sensitive to changes in the H-bond lendif]. So, for

a more comprehensive study other modes should also be(

included in the full Hamiltonian. Since, we are primarily
interested in the perturbative analysis of soliton formation in
Ablowitz-Ladik type equations, for simplicity, we restrict
ourselves to one mode only.

To develop the classical description of a single mode and
a single quantum vibron dynamics from E(.), we treat
{pn} and{B,} as classical variables. Furthermore, we con-
sider a normalized state vect¢W) where

|\If>=n§Z ca(t)[n). (4)

[n) is the Wannier state associated with the nth site and due
to the normalization condition, we hav&|c,|?=1. Now
taking the expectation value t¢isgy over the state vector,

| ) we get,

5({pn,Bn,cn,cﬁ})z(\sts,_]\If)
— K 2
- = m+§(ﬁn_ﬂn+l)
+2 [I-a(Bn=Fni1)]
X(Chy1CntChCni1)
_X; (,3n+1_,3n71)|cn|2- (5

£in Eq. (5) can be shown to be a constant of motion. So,
using this quantity as the relevant classical Hamiltonian, we
derive our equations of motion.

to obtain

X 2 2 o * *
Bn=Bn-1)= R(|C”| +lcn-1l9)— R(Cnflcﬁ'cncnfl)-

(€)

Finally the insertion of Eq(9) in Eq. (6) yields

2
L X
ific,=— ?(|Cn+l|2+|Cnfl|2+2|cn|2)cn

xa
+ ?(Cﬁﬂcn*’ CnCn+1FCh_1Cn+CrCn-1)Cp

2
o
+J(Chr1tCro1)— ?(Cﬁucn* ChCn+1)Cn+1

a2
* *
- ?(Cn—lcn—’— CnCn—l)Cn—l

X«

+ ?(|Cn+l|2+|cn|2)cn+l

X«
+?(|Cn|2+|cnfl|2)cnfl- (10)

We next define

2 2

o X X
g_ml '}’_—m- 5_m1 )\_g+26_71
A L
€= ATy Ty TT7
. Dy : x
cnzexp(mw)\/—xexp(Zw), and p,=P; P,
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Introduction of these definitions in E¢LO) and some simple
algebra gives

iD= 20+ (1+pp ) (Pps g+ Pp_g) =Fp(Py), (1)
where

Fo(®n)=€(pnsin+1tPn-1n-11 2P0 Py
—€1(pnn+1t Pa+1nt Prn-1FPn-10)Pn
—€pnn(Ppr1+Pyoq)
—€1l(pn+1n+17 Pan) Pr1
+(Pn-1n-1"Pnn) Pn-1]
—€l(pnn+1tPnrin=Pnn) Pn+1
+(pPnn-1+Pn-1n=Prn) Pn-1]- (12

Whena=0, we get from Eq(11) a variant of discrete non-

linear Schrdinger equatiofADNLSE) where acoustic pho-
non is considered instead of the usual optical phojich.

This equation is studied perturbatively for soliton solutions.

When we formally consider the first term of,(®,), n
eZ, we have

id)n_2®n+(l+Pn,n)(an+l+anfl)

= 6(Pn+1n+1+Pn—l,n—l+2pnn)q)n- (13
We refer to Eq.(13) as modified Salerno equatidiVMiSE).
We further note that the quantityy=3, ., In[1+|®,)?] is
conserved for MSE. Whea=0, we have Ablowitz-Ladik
equation[1,9]. This is known to have a single soliton solu-

tion. So, for|e|<1, we have an instructive example where
the soliton dynamics can be studied by a standard perturba-

tive method[14-16. Finally wheny=0, we get

icbn_2(Dn+(1+Pn,n+1+Pn+l,n)q)n+l

+(1+Pn,n—l+Pn—l,n)(Dn—1:O- (14

We next analyze Eq14) for possible soliton-like solutions.
B. Analysis of Eq. (14) for solitons

In order to gain an understanding of the nature of th
solution of Eq.(14) we consider the integrable Ablowitz-
Ladik discrete nonlinear Schdinger equationALDNLS).
The integrable ALDNLS system of equations redili®,15

iQn—2Qn+(Qni1+Qn-1)(1+|Q,[?=0, nez,

(15
The exact one-soliton solution of the ALDNLS is
sinhu ) )
Qn(r)=mexmk(n—x)—m] (16)
with the following equations for the soliton parameters:
u=0, k=0, N=w, 17
w=2[1—coshu cosk] (18

K. KUNDU
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X= Esinh,u, sink. (19
o
So, for eachu there exists a band of velocitiesee Eq(19)]
at which the localized state or the one-soliton state can travel
without experiencing any Peierls-NabaiiN) pinning due
to the lattice discretene$$1,55.

A careful inspection of Eq(14) reveals that if|®,, 4|
~|®,|, neZ, it is then a perturbed ALDNLS. To investi-
gate this further we write

1
f(w,k)=2 coshu cosk and ®,=—V¥,expikn—iwr)

V2f
(20
and bothu andk satisfy Eq.(17). We further define
. (Vo1 +P,21)
1) _ . n n+1 n—1
FH(WP,)=V,+sink 1+ 2 coshz
X(Wnr1=Wno1) (21)
FOW ) =(w—2)¥,+cosk(V,.1+V,_;)
cosk 5 )
+ m‘l’n(‘l’mﬁ‘l’n—l)- (22)

Introducing Eq.(20) in Eq. (14) we obtainF)(¥,)=0, j
=1,2 andne Z. We now assume that

V. =Qnexd —ik(n—x)+iN] (23
and also make use of Eg4.8) and(19). This, in turn yields
v

FO(W )=2 sinhu sink tanH w(n—x)]————
(¥n) w H e ( )](1+\Ifﬁ)2

cosk
coshu (1+Ww2)

P 2 coshu cosk v
— < COS COSK————.
(1+W2)?

FO(w,)

If  k~@2m+1)w/2, me Z, |sinh{)|< 1 but
|sinhu/+/cosk| is finite, Eg. (20) along with Eq.(23) then
constitutes a reasonably good approximation to the exact so-

Qution of Eqg. (14). We next apply a standard perturbative

method[14-16 to study sequentially soliton solutions of
Eqgs.(13), (14), and(11).

IIl. RESULTS AND DISCUSSION
A. Solitons in the perturbative regime of MSE, Eq. (13)

To apply the perturbation scheme to MSE, EtR), Eq.
(16) is used as the zeroth order squtidmg:Qn, neZ. In
this perturbative scheme, it is further assumed that param-
eters,k, X, u, andX depend on time. By means of these
dependences the zeroth order approximation,(Eg).makes
it possible to take into account the main effect of the pertur-
bation, e F,(®,)—the adiabatic adjustment to it of the soli-
ton. The procedure is well laid out in RéfL4]. This method
transforms the evolution of the discrete soliton of ELp) to
the analysis of a system of coupled ODE’s involvirgk,
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TABLE I. Nature of fixed points.
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| ke=nm Nature Stability I ks=nar Nature Stability
Xs=75 Xs= 5

2 2
| n I n
even even hyperbolic unstable even odd limit cycle Stable
odd odd hyperbolic unstable odd even limit cycle Stable

and . However, the equation for, albeit it can be ob-
tained, is not needed for the analyflgt—16.

Using the standard procedure we derive equationsk,for
w, andx. Inasmuch axQ, exd —ik(n—x)—iX] is real, the
perturbation term in MSE does not contribute goand x
[14]. Equations for these three variables are given below.

u=0 (24)
. sinh sinhu ¢ cosk
k=2 sink=— 2~ (25)
mo dk
= (27 sinen o 26
=3\ S u (,X) (26)
where
7725
- o
S(ux) =2 757 CO427SX) (27)
. sim(—
mo IS(p,X)
G(u,x) Ry (28)

We note thatu is a constant. When sifju<1 andu<1r it
can be shown that

Vr o (-

T I'(n)
M n=1 n

N~ sink" w. (29

I'l =+n

2

In the vicinity of fixed points, we have

2,=(—1)"A(u)2; (32

2,=(—1)'47°B(u,€)z;. (33

After some trivial algebra, we get frm Eq&82) and(33)
2

Z _
A(w)

%

ey 2
(=1) 47°B(p, €)

= Constant.

(34)

From Eq.(34), we then get for the fixed points the following
results shown in Table I.

We consider now Eqg€30) and(31). We note that when
pu—0,A(u)—2, andB(u,€)— 0. On the other hand, when
u—o, A(p)—2e*/ u while B(u,e)—2ee?*/u?. So, for
€>0, there exists a. such thatA(uw:) —B(uc,€)=0. The
magnitude ofu., of course varies witle. This is shown in
Fig. 1. Relevance of this section will be transparent as we
proceed further.

From Egs.(25) and(26) we get

2

¥

sinhu ¢ cosk.
no ok

€

2

dHeff 3 . :
9= —) sinfPu G(,x)x=0.

(39

So, within a possible addition of @ dependent constant, we
have

Her( p, €,k,x)~—A(u)cosk+B(u,e)cos 2mx. (36)
Since, we are considering=< 7, S(u«,x) in EqQ.(35) is again
approximated by the first term of the sum in Eg§7). We
further note that . is periodic both ink andx. It is easily
seen from EQq(36) that

So, u can be approximately related to the constant of mo-

tion, \V.

For the fixed point analysis, we note that=0 vyields
ke=nm, n=0,21,%2... . Similarly, k=0 yields X
=1/2,1=0,=1,£2 ... . In the subsequent analysis, we ap-
proximateS(u,Xx) by the first term in the sum. Fou<,
this is a reasonable approximation. We defipe x— x5 and
z,=k—Kks. We further define

sinhu

A(p)=2 (30

77_2

sinfPu  u
. /71'2.
sinh—
o

B(u,e)=2¢ (3D

10.5 . .
85 1
< 65 1
45 1
2.5 1 Il 1§
0 0.5 1 15 2
€

FIG. 1. This figure pertains to modified Salerno equation
(MSE), Eq.(13) in the text. It shows the dependence of the critical
value of u, . on the parametere for Heu(u,€,k,x), EQ. (36)
derived from MSE. Bothu. and € are dimensionless. Further de-
tails are given in the text.
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IH o

IH o
X

ok k=

(37

and

We should also note that.4(u,€,k,Xx) is a constant of mo-
tion and it defines approximately the total energy in the soli-
ton. It is to be noted that a potential energy ensues due tc

k
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imparting of nonintegrability in Eq(13) by the perturbation
term. Denoting this potential b U (u,€) we find that

AU(u,€)=Hef(,€,0,0)— Heff( M,G,O%) =2B(p,€).
(39

So, the effect of nonintegrability disappearseit0 or be-
comes negligible ifr?/ u>1.

From Eq.(36) we find thatE,,=—[A(u)+B(u,€)] and
Emac[A(w) +B(w,€)]l. We further define Ug(u,e€,X)
=B(u,e)cos 2mx and U . (u,€,X)=Uq(u,€,X) =A(u), be-

cause this will not change equations of motion. We then gelN

EnnsU_<(B—A) and A—B)<U  <E» We now con-

sider different cases for the dynamics. These are also show.e,

in Figs. 2a) and 2b) respectively. Figure @) describes the
situation for u< u. while Fig. 2b) is for u>u.. Further-
more, in Fig. 2b) we definek=27® to make the figure
symmetric. We consider now the dynamics in the spatial or
direction.

Case | :u<puc. SO,A(u)>B(u,e€).

(i) —(A+B)=En<E<(B—A)<O. In this limit, the soli-
ton is in the potential well defined by _ . So, the dynamics
in x is finite and oscillatory.(ii) (B—A)<E<(A-B).
Since, U_<E<U_,, the motion inx is infinite. In other
words, we get propagating soliton&ii) (A—B)<E<(A
+B)=Eax- In this case, the soliton is in the potential well
defined byU , . So, the motion irx is again finite and oscil-
latory.

Case Il :u>puc. So,A(un)<B(u,€).

In this case, sinceB—A)>0, there is no region in the

~_~

R

'QO-

-2

-0.5 0 . 1
X

-1
(b)

FIG. 2. (a) This figure pertains to MSE, E¢L3) in the text. This
figure shows the phase diagram of the dynamics of solitons in the
(x,k) plane, which is derived frorl . u, €,k,x) given by Eq.(36)
in the text. For this case=1.0. So,u.= 7. Since k., is taken to
be 7/4 as a choice, this in turn gives=2.052 from Eq(41) in the
text. So, this is the phase diagram fex u.. All quantities are
dimensionless(b) This figure pertains to MSE, Ed13). u=3.2.
Since, all other parameters and details are same as in Figaret2

energy domain where the soliton will not experience anys the figure foru> .. However, here&k=27®. So, this is the

potential energy for its motion in thg direction. So, the
motion inx is always finite and oscillatory.

phase diagram in thex(®) plane instead of usuak(k) plane. This
is done to make the figure symmetric. Two propagating modes in

We consider next the other scenerio of the dynamics inhe ®-direction are shown by broken curves. Again, all quantities

the k direction. We defineug(u,k)=—A(u)cosk and
U-(u,€e,k)=uy=B(u,e€). We then have the following situ-
ations.

(i) —(A+B)<E<(A—B)<0. In this case, the soliton is
inside the potential_ . So, the motion in thé& space finite
and oscillatory.(ii) 0<(A—B)<E<(B—A)>0. The mo-

are dimensionless.

So, the effective mass of the solitomg is A(u) . For
w<l we getmg~ my(1— wu?/6) where the rest massy,
is taken to be}. This implies that the presence of integra-
blity reduces the effective mass of the soliton. Again from

tion in the k direction is infinite due to the absence of a Egs.(32) and(33), we find that the frequencyy of the small
confining potential in this energy range. This is shown inyibrations of the soliton center of mass near the bottom of
Fig. 2(b) by two broken curves lying on respective separati-the potential well is

ces.(iii) (B—A)<E<(B+A). The soliton experiences the
potentialu, in thek direction. So, the corresponding motion
is finite and oscillatory(iv) For u<pu., A(ux)>B(u,€).
So, it is clear from the analysis of the motion in theirec-
tion that the motion irk will always be finite and oscillatory.

For further understanding of the dynamics, we considet”

He given by Eq.(36) aroundk=0 andk=* 7. We find
aroundk=0 that

H o~ %A(M)k2+u_(,u,e,x). (39

w=2mJA(u)B(u,€).

It is also clear from the discussion that there is a critical
alue ofk, k., such that fork>k., we shall get spatially
propagating soliton. For<u., K is given by the follow-
ing equation

(40

2 B(u,e)

A(w) 4

Ke= arcco%l -
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We also note that, inasmuch &u,e)—0 for 72/u>1,
ki—0. On the other hand, whep= ., ki=(2n+ 1),
n=0,+1,+2 ... . Foru>uc, Eq. (41 shows that nd,
exists.

Around k= * 7, we write k=*=7— 6. Then, from Eq.
(36) we get

1
Hetr= = 5 A(1) 607+ U o (1, €.X). (42)
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To understand the physical origin of EGl7) we examine
our ansatz, Eq(16). We note thatx has the dimension of
length while bothu and k have the dimension of inverse
length or momentum. So, both of these cannot be simulta-
neously conjugate variables 0. Consequently, these two
variables must be related by a functional relationship as in
Eq. (47). For the full problem where phonons alter both site
energies and hopping, andk are also found to be related.
However, the relationship is not as trivial as E47) and it

will be discussed later. The equation for the remaining vari-

When k=0, we have an unstaggered localized state, whileble,x reads

for k==, we have a staggered localized state. We note
that for these values d& the velocity of the Ablowitz-Ladik
soliton is zero. We find that for staggered as well as nearly
staggered localized states)4 of the localized soliton is whereF(u,x) is defined as follows.
negative. Obviously, a localized state of a negative effective
mass is mechanically unstable at a minimunof( «, €,X).

So, the staggered as well as nearly staggered localized states - o)

will either be pinned or oscillate at the top of the potential. Sl(:“’x):szl T Ta2s)
This is precisely found because at the toplof , kis = . sin)-( )
So, the kinetic energy is zero. This is consistent with the

x=F(u,X)sinhu tanhu sink, (48)

s 2

s
cos 7 cog2mSX)

numerical result in Ref.11].

Finally, we note that the analysis in this section is done 2
within the leading order approximation by assuming that
>0. Whene<0, we setx=y+ 1. Then, within the same

leading order analysis and in variablgsand k, result will

remain the same. We consider now the addition of the sec-

ond term of 7,(®,) [Egs. (11) and (12)] to Eqg. (13). A
careful inspection of formulas given in Refd.4] and[15]

will show that this term will not contribute to equations for

2c
1+2ccoth2u)— ;

fl(cvﬂ):
MZ

2
F(u,x>=fl<c,m[1+zsm,x>]+M—§[1+2sl<u,x>]
(49

and «. Again, it can be simply shown that this term also andS(u,x) has already been defined by E87). To derive

does not contribute to the equation farIn other words, in
this perturbation scheme, the term is innocuous.

B. Perturbed Ablowitz-Ladik soliton dynamics of Eq. (14)
To apply the perturbation scheme to Et4), we note that
for this case Eqs(11) and(12) take the following form

ici>n—2<1>n+<1+pn,n)<<bn+1+<1>nfl>=ezfp«bn),( )
4

where

Epr((Dn): —(Pnnt1tPns1n=Pan)Pnit

_(pn,nfl+Pn71,n_pn,n)q)n—l- (44

these formulagEgs.(26), (29), (45), (46), and(49)], we have
made use of the famous Poisson’s sum formfild,56,
which reads

f(y).
(50)

” 2ms
1+2> cos( T y)
s=1 M

o0 1 -
S tow==] ay
n=—o M) -

Other relevant integrals are given in Appendix A.

To obtain fixed points for this of set ODE's we set
=0 andks=0. We further note that,=0 also implies that
,iLS=O [Eq. (46)]. By comparing Eqs(45) and(48) with Egs.
(26) and (25) respectively, we find that this system also has
two sets of fixed points. Two sets together gives,ks}
={I/2,(n m)}, 1&neZ. Dependence of fixed points dn

Again, the standard method transforms the evolution of theyngn for this case is also similar to the case of MSE. Hence,
discrete soliton of Eq(14) to the analysis of a system of nhere too Table | holds good. The structure of fixed points

coupled ODE'’s involving, k, andu [14—16. Equations for
first two variables read

3

k=|—] [sinhu cosk]? G(u,X)

(45)

w=tanhu tank k, (46)

whereG(u,X) is is given by Egs(27) and (28). From Egs.
(45) and (46) we find that

sinhu cosk=c= Constant.

(47)

then tells that below a threshhold energy, only oscillatory
localized states will exist. It is again easy to see from Egs.
(45) to (49) that if sinhutanhu sink#0, we then have

d,LL O')ﬁ f dx
FluX)g-+| o] 4, =0 (51)
where
~ 4c
Feri(p,x,.0)= —S(1.X). (52)
y72
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S(u,X) is given by Eq.(27). We further define

dh(u,c) 2c
et (53
and
Her(12,X,€) = h(u,€) + Herr 1,X,C). (54)

The evaluation ofh(u,c) is given in Appendix B. After
some trite algebra it can be shown that

c
4 1+2ccoth2 u)+ ;

dHeff(,U,,X,C) dlu’
= - - S .
(55)

Equations(45) and(46) definedu/d7. So, if |u| is suitably
bounded [u|< ), we have an approximate constant of mo-
tion. This can be called an approximate effective Hamil-

tonian (see also Appendix CEquations fox, u, andk are

derived in Appendix D using the Poisson bracket formalism

and the effective Hamiltonian given by E(p4). The phase
diagram of the motion of the soliton in the,k) plane de-

rived from Egs.(47) and (54) for c=2.0 is shown in Figs.
3(a) and 3b). While Fig. 3a) shows the periodicity of the
motion in thex direction, Fig. 8b) gives us the picture in the

k direction. This is a typical phase diagram showing both

oscillatory localized solitons as well as propagating solitons
Again Fig. 4 shows the motion in the direction for c
=1.2. By comparing Figs. (@) and 4, we see that as—0,
the motion of the soliton tends to become free.

What happens if we use the ansé2p) instead of(16)?
Of course, (1) is replaced byX. No significant change
occurs. Since, we have to assume that ho#imd . depend
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on time, an extra term will be added to the perturbation term FIG. 3. (a). This figure pertains to the model with sole off-

[Eq. (44)]. However, its contribution to the evolution equa-
tions [Egs. (45), (46), and (48)] can be shown to be zero.
Furthermore, in these equations one factoe f replaced by
tanhu/4. Again, the same procedure can be used to find th
corresponding effective Hamiltonian.

C. The effect of normalization on the perturbative solution
of Eq. (14)

We use here ansat20) instead of(16). The reason will
be self evident. We note tha&|c,|?=1, ne Z implies that
S.®.2=N=g. Now introducing Eqs(20) and (23) and
applying Eq.(50) we obtain

sinhu tanhu

2gcosk = [1+2S(,x)]. (56)

We now note that whefu|< 1, bothS(u,x) andG(u,Xx)
go to zero as eXp-(7/w)]. So, in this limit the second term
of Eq. (56) can be ignored. We also note that=0 andk
~0 in this limit. In other words bothx andk become prac-
tically time invariant. Another consequence is that Ety)
in practical terms becomes redundant also. Equat&f)

diagonal coupling. It is obtained from the corresponding,
Hew(u,X,C) given by Eq.(54) in the text. It shows the phase dia-
gram of the dynamics of solitons in thedirection in the &,k)
glane forc=2.0. u =sinh"}(c)=1.44. All quantities are dimen-
sionless. Further details can be found in the téxt. It is again for
the same model as in Fig(a8. It shows the dynamics of solitons in
thek direction.|c|=2.0. Again all quantities are dimensionless. For
two figures in the flanksk. =k=* 7. Also, x,, =x*0.5.

then givesu~2g cosk or pmayx=2g. The minimum soliton
size (o) is approximately ZL,;';X. We again note that in
this limit

> nlc,|?=x.

(m=_ (57)

So, x becomes the center of mass of the distribution of the
soliton packet. A striaght forward asymptotic analysis of Eq.
(49) gives from Eq.(48)

sinhu tanhu

PE

sink (58
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' amide-l mode, it is also found theoretically that(l)
T — T T ] changes fron 2 to 3 pN iR(N---O) is changed from 2.916
to 2.722 A[53]. For a similar change iR(N---O), a(NH)
0.3 r ] for the v(NH) mode changes from 3 to 8 p[83]. Notewor-
thy sensitivity of «(NH) towards the change iR(N "~ O)
might have an important bearing on the mechanism of en-
ergy transport in proteins. This will be discussed later.

:/W\/—\
e D. Perturbed Ablowitz-Ladik soliton in the full problem,
We first note that Eq(11) has a genuine Ablowitz-Ladik

term, which is needed for a stable soliton. This arises due to

-0.1
coupling of diagonal and off-diagonal excit@rbron)-
phonon interactions. Using the perturbation scheme equa-
tions fork and u for the full problem are derived. To write

03 ‘ . ‘ equations for these two variables in compact form, we first
e - 0 1 2 define
: . : 2(m\®
FIG. 4. It shows the phase diagram of the dynamics of solitons Gi(u,X)= |\ sinffu G(,X) (60
for the same model in thex direction but for c=1.2. uq M

=sinh%(c)=1.016. All quantities are dimensionless.

k .
coshu +2gsin 2k

tanhu (61

o . . : M(k,p)= ( 6
which is practically the velocity of AL solitons. Inasmuch as

=|J/%|t, from Eq. (58) we get that the maximum velocity

of the soliton,V,~2 |J/%|. For the amide-I, our calcula- N(K, )= 27— & cosk
tion gives V¢~ 1.32x 10° m/s. For the calculation, the MY O coshu
distance between two carbonyl groups is taken 4.53A.

Vs is approximately 0.29 of the sound velocity in the spineG(x,X) is defined by Eq(28). With these definitions we
[34,36. Another interesting quantity is the extent of contrac-then have

tion or expansion of the chain due to the soliton formation. It . )

is calculated below along with its definitigi.4]. k=N(k,u)G1(u,x) and u=M(K,u)G1i(u,X).

+4g cog k. (62)

So, the differential equation that defines a functional rela-
tionship betweemn andk is Mdk/dt—Ndu/dt=0. The cor-
responding Pfaffian differential equation Idk—Ndu
2] o . =0. We next consider two special cases. Cas&+0. In
- n;w R PPp 4] this limit we have sinfu(y+2gcos k)=Constant. Wheny
=0, we get back Eq47). Case Il :6#+0 butg=0. Physi-
cally this means that the off-diagonal coupling is sufficiently
=~ tanhu. (59 weak so tha? can be neglected. In this limit, we find that

2 o)
im (Brs= B =—7¢ 2 Rcrch 1]

N—oo

So, for x>0 andJ and « having the same sign, the chain ¢(K,p)=2yp+cothu( s cosk/coshu — 2y) = Constant.

will expand due to soliton formation. To understand itS\yhen s=0. it gives w=Constant, which agrees with the
physical origin, we note that Eq14) is nonintegrable. So, |iterature re'sul[14]. '

moving solitons in this model should eventually be pinned |, the general case, we have a Pfaffian differential equa-
[14,59. This can be achieved here only by reducing the in+jon of two variablesk and . According to the theorem
tersite transfer rate or equivalently by increasing bonot57], it will always possess an integrating factg(k, w)

lengths. Appendix d. So, there will always be a functiom(k
Finally, for the amide-I vibration,a(l) under normal [sugﬁ that d so. Y mlor)

physiological condition does not appear to exceed 2 pN

[1 pN=6.24x10"% eV/ A]. For »(NH), a(NH)~3 pN d¢ =pB(Mdk—Ndu)=0.

[53]. So, the magnitude aof for either of these two modes is

not large enough to give a physically relevant valuergf. Once, B is found from the appropiate ODE, the relation be-
If «~10 pN, we geir,,~ 30 units. So, this can be taken as atweenk andu can be found57]. But, the problem does not
crude critical value ofx. We note in this context that in the appear to have any closed form analytical solution defying in
numerical simulation in Ref[36], the magnitude ofx is  turn a closed form analytical expression s for the full
allowed to vary from 20 to 60 pN. We further note that in model. But, we note that the general case in spite of its
a-helix under physiological condition®(N---0O), whereR  structural complication, is similar in one important aspect at
stands for the bond-length, is 279.12 A [22]. For the least to the case of purely off-diagonal coupling model. Both
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w and k vary with time in the general case also. So, thecoupling cannot be a very effective mechanism for the trans-
normalization condition will impose adiabatic variation of POrt of energy. The system is inherently discrete. This dis-
both variables in time as found in the previous case. This irf'ét€ness will cause PN retardation to the moving soliton.
turn needsm2/u>1, which is very easily deducable from ventually, the soliton will be pinned due to the PN potential

. . arising from the discretene$41,55. In mathematical lan-
Eq. (63). Consequently, the constraint relatipgand k can : ; .
bg tfeaied as re?jundaﬁt in this Iimit@?lﬂ>1ﬁgain itis guage, nonintegrable character of the model equation will

deducable f h . del that without th Ihave a dominant effect. So, the relevance of the calculation
deducable from the previous model that without theé normaly,,q1ying only off-diagonal coupling of vibron with phonon
ization condition, the full model will also give both trapped ;, the spine is paramount. We first note that the model

an_d moving solitons. So, from kn_own results a_nd our CaICU'ShOWS, just like in the diagonal case, both trapped and propa-
lations we see that due to off-diagonal coupling, howeverating solitons. However, when the conservation of the prob-
small, together WIFh normahzatlon condition full model will ability is taken into account, Ablowitz-Ladik type soliton is
also prefer a moving soliton. found in the propagating mode. This is definitely an impor-
Since, for this modek|c,|?=1, ne Z implies £,|®,[?>  tant result. Albeit the calculation is done in the perturbative
=\, we obtain in the limit ofm?/u>1, A~2sintf u/u. Of  scheme, it is clear beyond doubt that an element of off-
course, to obtain this result, Eq4.6) and(50) are made use diagonal coupling, however small, is needed for the effective
of. Again, whenm?/u>1, we see from Eq(57) thatx ap-  propagation of a soliton or a soliton-like moiety. This is fur-
proximately determines the center of mass of the soliton. Saher substantiated by the full model where both couplings are
x is the velocity of the profile. In this limiting situation, the ¢onsidered. Of course, the present formalism also shows that
full model then gives off—d|agonall coupling cannot altogether remove PN pinning
problem. Since, our model equation, Ef4) is comparable
to AL equation, we expect that PN pinning will be sup-
sink. pressed considerably. Definitely, the propensity for the for-
mation of self-localized states due to PN pinning should be
(64) investigated in detail. Regarding other two calculations, we
i . ) ) note that the problem of pinning of solitons by PN potential
We first note that in Eq(64), there is a component in the i Salerno model is studied extensively by numerical integra-
velocity that is the velocity of Ablowitz-Ladik soliton. Itis tjon [11]. It is found that solitons get pinned faster and faster
due to the genuine Ablowitz-Ladik term in EQL1). When  as the strength of the nonintegrable term increases. This
all parameters have same sign, we have bdt#0 and\  problem of pinning of solitons will not be any different for
>0. Then a comparison with with E458) shows that the MSE, Eq.(13). In the full model we have the requisite AL
presence of both diagonal and off-diagonal couplings inionlinear term which arises due to coupling of diagonal and
creases the velocity of the soliton. Now, in the numericaloff-diagonal interactions. Although AL term makes solitons
front, when we takey=40 pN anda=1 pN as in Ref. transparent to PN potential, the relevant equafieqg. (11)]
[31], we getA=~0.56 which, in turn givesu=0.273. We also has extensive nonintegrable terms. So, the soliton in this
then getcm?/ u~36. So, the condition to use E¢64) is  model will also be pinned. We, however, expect that by in-
satisfied. We get from these da#th ~0.024. Consequently, creasing the off-diagonal coupling and concomitantly reduc-
the full model gives that the maximum velocity of soliton, ing the diagonal coupling, this pinning problem can be sig-
Vne~1.3x10° m/s. Corresponding result from numerical nificantly reduced. This aspect needs thorough investigation.
simulation isV,e~1.7x10° m/s[31]. The intersite distance ~ We note in continuation thak(1) for the amide-I vibra-
(d) in both cases is 4.5 A31]. We further get that the mini- tion in a-helix is very insensitive to the changeR{N-: - -O),
mum soliton sizeg,,~7. Next quantity to calculate is the where R stands for the bond-length. On the other hand,
extent of contraction or expansion of the chain due to solitore(NH) for »(NH) is very sensitive to any alternation in
formation. To obtain this we introduce ansdi®) to the R(N---O). Relevant theoretical data are quoted in the text. In
definition[14]. This then gives view of the discussion above, we propose the following
modification to the existing mechanism. In our scheme, to
facilitate the transporte-helix undergoes a conformational
change which change’(N---0). In this conformationally
changed system, energy is transferred from the amide-I mode
We next discuss the problem of soliton pinning and its ef-to the neighboringy(NH) mode or modes where the off-

X==

sinhu tanh S sinh
2 T ik 2o

PE

tanh
1 uw

au cosk
K sinhu

X
o+
K

lim (Bn,s—B-ns) =2

N— o0

. (65

fects on biological energy transport. diagonal vibron-phonon coupling is sufficiently strong. This
will aid the propagation of energy by a soliton like entity. At
E. Soliton pinning and biological energy transport the concluding stage the system undergoes another confor-

) ) mational change either locally or globally to trap the soliton
There are two facets in the energy propagatidn,an 4t the point of capture by enhancing or introducing anew
effective trapping of energy an@) its effective release fol-  giagonal vibron-phonon coupling. To the best of my knowl-

lowed by its dissipation-free propagation to the desired |Ocaedge, this mechanism of energy transfer has not been studied
tion. Energy can be effectively trapped by diagonal couplingsg tar. at least in details.

of the vibron to the phonon. In this context, a possibility that
natural proteins may absorb radiation into a state that is op-
tically self trapped and then relax to a state that is acousti-
cally self trapped with a longer lifetime, is also proposed The formation of moving soliton due to full exciton
[1,58]. However, the moving soliton formed by diagonal (vibron)-phonon coupling in a soft molecular chain in gen-

IV. SUMMARY
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eral and in a spine of an-helix in particular is studied here. Other two integrals that we need aréd(O,x) and
This study is done within the framework of a Hamiltonian ¢J(a,u)/da. Furthermore, for all integrals involving the pa-
which contains the standard SSH part and a Holstein partameter a, we set=27s/u, seZ.

Relevant nonlinear equations are obtained using antiadia-

batic approximation. An interesting nonlinear equation that APPENDIX B: CALCULATION OF  h(u,c)

is derived here for the first time as an offshoot of the full s

model is modified Salerno equation. This equation can be Foru“<w*, we have[59]

considered to describe a truncated model for biological en-

ergy transport. Again, this equation is studied by perturbative 1 + E Bax w2k
method for soliton dynamics. Analysis shows that noninte- (2k)!
grability in the equation introduces finite activation energy

for enabling solitonic motion. This model also shows stag-Where By, is the Bernoulli number of order (4 with the
gered and unstaggered localized states. Furthermore, stag!lowing expressiorf59].

gered and nearly staggered localized states are shown to have
negative effective mass. Perturbative analysis of the model
with sole off-diagonal coupling also confirms that noninte-
grability introduces finite activation energy for solitonic mo-
tion. It is further found from this model that an element of and ¢ defines Riemann Zeta function. Now the insertion of
off-diagonal coupling, however small, and the conservatiorB2 in B1 gives[59]

of the probability together give a propagating soliton. This in

coth,u— (B1)

2(2k)!
BZk:(_l)k_l#aZk) (B2

my opinion is a very important result. In the full model, the [ cothu—1] 1 2 ” ‘ w2
AL nonlinear term that stabilizes solitons is found. This term  ——— 35— =3~ 3 kzz (=D%2k)|
arises due to coupling of diagonal and off-diagonal exciton- H (mu)

phonon interactions. It is also suggested that the magnitude dr'(w)

of off-diagonal coupling should be enhanced in the full =4 (B3)
model to reduce PN pinning problem that may be experi- K

enced by moving solitons. So, a full analytical calculation,yhere the functiol" () is defined by

involving both diagonal and off-diagonal couplings, if pos-

sible, is desirable to discern the importance of both cou- {Z2(j+H1-1}

plings. Again, models involving more than one mode should aj:j—v j#0;

be considered. Other refinement in the theory will need the

consideration of mechanical interaction between oscillators 1 21 4 2
with more complex structure. Finally, these calculations F(M)——Inu——ln 145 4= > (-1)a d
might also be useful in understanding proton transport in ™ m? =1 N

biological systems and exciton transport in nonbiological (B4)

hydrogen-bonded systems. .
As n—x, {(n)—1. So,a,—0 asn—=. The alternating

infinite series in Eq(B4) is convergent by the Leibnitz cri-
terion[59]. It is also easy to show that the series is absolutely
Following integrals are required for the perturbative cal-convergent with the radius of convergence ofm)2 The
culation. numerical convergence of the sum in EB4) is also greatly
improved[59]. Equation(53) can be rearranged to obtain

APPENDIX A: RELEVANT INTEGRALS

| (" cogax) dx= a AL
@B | leostip ™ am AV dh(ue) 2 [2pcoth2u)~1]
2% sin — = —2+160 3 (B5)
2B du ,u (2p)
and 3>0. This integral can be found in Re69]. and the constant is defined by Eq.(47). The function,
h(u,c) can be obtained by using E(B4).
o cogax)
Ja,pu)= J X
—OO[COST(X)COSKX—,LL)]2 APPENDIX C: PFAFFIAN DIFFERENTIAL EQUATIONS
2 IN TWO VARIABLES AND THE EFFECTIVE
oral sinl 2F HAMILTONIAN
2
= a Consider the following Pfaffian differential equation in
; 2cinH &7 two variables, say. andx.
(sinh(w)) smi‘( 5 ”
F(u,X)dx+G(u,x)du=0. (C1
2ma sin(aw)

1—coth(u) This is the Pfaffian differential form of Eq51). Another

(sinr(,u))zsinr<7” instructive example of a Pfaffian differential equation of two
variables comes from Ed63). There is a fundamental dif-

(A2) ference between Pfaffian differential equations in two vari-
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ables and those in a higher number of variables: (Ift,x) of the transformation is symplect[@,60]. So, the transfor-
and G(u,x) satisfy the exact differentiality condition in a mation is canonical. Our fundamental Poisson brackets are
certain domairD, there exists ifD then exactly one func-

tion, H(u,x) such thatH (u,x) =constant. Again, a Pfaffian {x,x}=0={u,u} (D1)
differential equation in two variables always possesses an

integrating factor. So, iF and G do not satisfy the exact sinhu tanhy sink

differentiality condition as such, it is always possible to find b= c (D2)

an integrating factorix(u,Xx) such that F) and («G) sat-

isfy the exact differentiality conditiof67]. For some special Of course, Eq(D2) can be derived from Eq47). We now
cases,x(u,x) can be easily found57]. However, in the use basic properties of Poisson bracket to obtain equations of
more general case it is a solution of a partial differentialmotion[60].
equation. This PDE arises from the exact differentiality con-
dition. . IH e
It is then clear from this deliberation that the right hand k=1k,Hetthx == — = (D3)
side of Eq.(55) can be absorbed in the definition s by
using an appropriate integrating factor. The extra term in Eq.

: JH oH
(55) is a second order term. In the range.of considred in X:{XvHeﬁ}x,k:ﬁ{XM}"'a_ﬁf{X,M}x,k
our calculation, its inclusion iH will not add anything M
qualitatively different in the physics. With this consideration, sinhu tanhg sink dH
this is ignored in the numerical calculation. = c P ; (D4)
APPENDIX D: DERIVATION OF EQUATIONS 3 JH
: ff ff
OF MOTION ﬂ:{MvHeﬁ}x,k:T:{MaM}_ oL Kb

To derive the equations of motion, we first multiply both ' '

sides of Eqs(45), (46), and (48) by ¢! and define a new __ sinhu tanhu sink 9H e (05)

time, 7' =c7. So, all derivatives with respect to time here c X

will imply derivatives with respect tor’. ¢ is, of course,

defined by Eq(47). We make a coordinate transformation, Albeit Eg. (48) is slightly modified due to the approximation
wherex—x andk— u. The latter transformation is defined in Heg, other two equations, namely Eqd45) and (46) are
by Eq.(47). It can be easily shown that the Jacobian matrixfully obtained.
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